Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 595(1): 14-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107035

RESUMEN

The self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues. Phosphomimetic substitutions at phosphorylation sites within the homeodomain (S130 and S131) have site-specific functional effects. Phosphomimetic substitution of S130 abolishes DNA binding by NANOG and eliminates LIF-independent self-renewal. In contrast, phosphomimetic substitution of S131 enhances LIF-independent self-renewal, without influencing DNA binding. Modelling the DNA-homeodomain complex explains the disparate effects of these phosphomimetic substitutions. These results indicate how phosphorylation may influence NANOG homeodomain interactions that underpin ESC self-renewal.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Autorrenovación de las Células , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/metabolismo , Secuencia de Aminoácidos , Animales , Electroforesis en Gel de Poliacrilamida , Ratones , Proteína Homeótica Nanog/química , Proteína Homeótica Nanog/genética , Fosforilación
2.
Elife ; 62017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29256862

RESUMEN

Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/fisiología , Factores de Transcripción SOXB1/metabolismo , Animales , Estratos Germinativos/embriología , Ratones
4.
J Mol Biol ; 429(10): 1544-1553, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27939294

RESUMEN

The level of the transcription factor Nanog directly determines the efficiency of mouse embryonic stem cell self-renewal. Nanog protein exists as a dimer with the dimerization domain composed of a simple repeat region in which every fifth residue is a tryptophan, the tryptophan repeat (WR). Although WR is necessary to enable Nanog to confer LIF-independent self-renewal, the mechanism of dimerization and the effect of modulating dimerization strength have been unclear. Here we couple mutagenesis with functional and dimerization assays to show that the number of tryptophans within the WR is linked to the strength of homodimerization, Sox2 heterodimerization and self-renewal activity. A reduction in the number of tryptophan residues leads initially to a gradual reduction in activity before a precipitous reduction in activity occurs upon reduction in tryptophan number below eight. Further functional attrition follows subsequent tryptophan number reduction with substitution of all tryptophan residues ablating dimerization and self-renewal function completely. A strong positional influence of tryptophans exists, with residues at the WR termini contributing more to Nanog function, particularly at the N-terminal end. Limited proteolysis demonstrates that a structural core of Nanog encompassing the homeodomain and the tryptophan repeat can support LIF-independent colony formation. These results increase understanding of the molecular interactions occurring between transcription factor subunits at the core of the pluripotency gene regulatory network and will enhance our ability to control pluripotent cell self-renewal and differentiation.


Asunto(s)
Células Madre Embrionarias de Ratones/fisiología , Proteína Homeótica Nanog/metabolismo , Multimerización de Proteína , Triptófano/metabolismo , Animales , Análisis Mutacional de ADN , Ratones , Proteína Homeótica Nanog/genética , Factores de Transcripción SOXB1/metabolismo , Triptófano/genética
5.
Genes Dev ; 30(9): 1101-15, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125671

RESUMEN

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Asunto(s)
Heterocromatina/genética , Heterocromatina/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Proteína Homeótica Nanog/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Regulación hacia Abajo , Eliminación de Gen , Ratones , Proteína Homeótica Nanog/genética , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
EMBO J ; 32(16): 2231-47, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23892456

RESUMEN

Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog-Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog-Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2-Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Ensayo de Unidades Formadoras de Colonias , Células Madre Embrionarias/metabolismo , Immunoblotting , Inmunoprecipitación , Ratones , Proteína Homeótica Nanog , Plásmidos/genética , Mapeo de Interacción de Proteínas , Técnica SELEX de Producción de Aptámeros , Triptófano/metabolismo , Tirosina/metabolismo
7.
Cell Stem Cell ; 12(5): 531-45, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23642364

RESUMEN

Embryonic stem cell (ESC) pluripotency is governed by a gene regulatory network centered on the transcription factors Oct4 and Nanog. To date, robust self-renewing ESC states have only been obtained through the chemical inhibition of signaling pathways or enforced transgene expression. Here, we show that ESCs with reduced Oct4 expression resulting from heterozygosity also exhibit a stabilized pluripotent state. Despite having reduced Oct4 expression, Oct4(+/-) ESCs show increased genome-wide binding of Oct4, particularly at pluripotency-associated enhancers, homogeneous expression of pluripotency transcription factors, enhanced self-renewal efficiency, and delayed differentiation kinetics. Cells also exhibit increased Wnt expression, enhanced leukemia inhibitory factor (LIF) sensitivity, and reduced responsiveness to fibroblast growth factor. Although they are able to maintain pluripotency in the absence of bone morphogenetic protein, removal of LIF destabilizes pluripotency. Our findings suggest that cells with a reduced Oct4 concentration range are maintained in a robust pluripotent state and that the wild-type Oct4 concentration range enables effective differentiation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Secuencia de Bases , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Clonales , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Humanos , Datos de Secuencia Molecular , Células Madre Pluripotentes/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Suero , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/metabolismo
8.
EMBO J ; 31(24): 4547-62, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23178592

RESUMEN

NANOG, OCT4 and SOX2 form the core network of transcription factors supporting embryonic stem (ES) cell self-renewal. While OCT4 and SOX2 expression is relatively uniform, ES cells fluctuate between states of high NANOG expression possessing high self-renewal efficiency, and low NANOG expression exhibiting increased differentiation propensity. NANOG, OCT4 and SOX2 are currently considered to activate transcription of each of the three genes, an architecture that cannot readily account for NANOG heterogeneity. Here, we examine the architecture of the Nanog-centred network using inducible NANOG gain- and loss-of-function approaches. Rather than activating itself, Nanog activity is autorepressive and OCT4/SOX2-independent. Moreover, the influence of Nanog on Oct4 and Sox2 expression is minimal. Using Nanog:GFP reporters, we show that Nanog autorepression is a major regulator of Nanog transcription switching. We conclude that the architecture of the pluripotency gene regulatory network encodes the capacity to generate reversible states of Nanog transcription via a Nanog-centred autorepressive loop. Therefore, cellular variability in self-renewal efficiency is an emergent property of the pluripotency gene regulatory network.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Retroalimentación Fisiológica , Citometría de Flujo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes , Hibridación Fluorescente in Situ , Ratones , Proteína Homeótica Nanog , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Hum Genet ; 130(2): 255-64, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21544581

RESUMEN

X-inactivation, the molecular mechanism enabling dosage compensation in mammals, is tightly controlled during mouse early embryogenesis. In the morula, X-inactivation is imprinted with exclusive silencing of the paternally inherited X-chromosome. In contrast, in the post-implantation epiblast, X-inactivation affects randomly either the paternal or the maternal X-chromosome. The transition from imprinted to random X-inactivation takes place in the inner cell mass (ICM) of the blastocyst from which embryonic stem (ES) cells are derived. The trigger of X-inactivation, Xist, is specifically downregulated in the pluripotent cells of the ICM, thereby ensuring the reactivation of the inactive paternal X-chromosome and the transient presence of two active X-chromosomes. Moreover, Tsix, a critical cis-repressor of Xist, is upregulated in the ICM and in ES cells where it imposes a particular chromatin state at the Xist promoter that ensures the establishment of random X-inactivation upon differentiation. Recently, we have shown that key transcription factors supporting pluripotency directly repress Xist and activate Tsix and thus couple Xist/Tsix control to pluripotency. In this manuscript, we report that Rnf12, a third X-linked gene critical for the regulation of X-inactivation, is under the control of Nanog, Oct4 and Sox2, the three factors lying at the heart of the pluripotency network. We conclude that in mouse ES cells the pluripotency-associated machinery exerts an exhaustive control of X-inactivation by taking over the regulation of all three major regulators of X-inactivation: Xist, Tsix, and Rnf12.


Asunto(s)
Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Inactivación del Cromosoma X/fisiología , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Regulación de la Expresión Génica/fisiología , Ratones , Proteína Homeótica Nanog , ARN Largo no Codificante , ARN no Traducido/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas , Inactivación del Cromosoma X/genética
10.
Biochem J ; 411(2): 227-31, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18290762

RESUMEN

The defining activity of the homeodomain protein Nanog is the ability to confer cytokine-independent self-renewal upon ES (embryonic stem) cells in which it is overexpressed. However, the biochemical basis by which Nanog achieves this function remains unknown. In the present study, we show that Nanog dimerizes through a functionally critical domain. Co-immunoprecipitation of Nanog molecules tagged with distinct epitopes demonstrates that Nanog self-associates through a region in which every fifth residue is tryptophan. In vitro binding experiments establish that this region participates directly in self-association. Moreover, analytical ultracentrifugation indicates that, in solution, Nanog is in equilibrium between monomeric and dimeric forms with a K(d) of 3 muM. The functional importance of Nanog dimerization is established by ES cell colony-forming assays in which deletion of the tryptophan-repeat region eliminates the capacity of Nanog to direct LIF (leukaemia inhibitory factor)-independent self-renewal.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Dimerización , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Proteína Homeótica Nanog , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Appl Environ Microbiol ; 72(4): 2950-6, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16598002

RESUMEN

Although thiotrophic symbioses have been intensively studied for the last three decades, nothing is known about the molecular mechanisms of symbiont acquisition. We used the symbiosis between the marine nematode Laxus oneistus and sulfur-oxidizing bacteria to study this process. In this association a monolayer of symbionts covers the whole cuticle of the nematode, except its anterior-most region. Here, we identify a novel Ca(2+)-dependent mannose-specific lectin that was exclusively secreted onto the posterior, bacterium-associated region of L. oneistus cuticle. A recombinant form of this lectin induced symbiont aggregation in seawater and was able to compete with the native lectin for symbiont binding in vivo. Surprisingly, the carbohydrate recognition domain of this mannose-binding protein was similar both structurally and functionally to a human dendritic cell-specific immunoreceptor. Our results provide a molecular link between bacterial symbionts and host-secreted mucus in a marine symbiosis and suggest conservation in the mechanisms of host-microbe interactions throughout the animal kingdom.


Asunto(s)
Bacterias/crecimiento & desarrollo , Moléculas de Adhesión Celular/química , Lectinas Tipo C/química , Lectinas de Unión a Manosa/metabolismo , Nematodos/microbiología , Receptores de Superficie Celular/química , Agua de Mar/parasitología , Simbiosis , Animales , Bacterias/metabolismo , Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/química , Modelos Moleculares , Nematodos/metabolismo , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...