Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 421(2): 194-203, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913220

RESUMEN

Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction. Nonetheless, the chromatin and spindle organisations are profoundly altered. Early morphological disorders induced by the absence of MAPK/ERK activation are correlated with an important inhibition of global protein synthesis and modification in the cyclin B accumulation profile. After appearance of morphological disorders, there is an increase in the level of the inhibitor of protein synthesis, 4E-BP, and, ultimately, an activation of the spindle checkpoint. Altogether, our results suggest that MAPK/ERK activity is required for the synthesis of (a) protein(s) implicated in an early step of chromatin /microtubule attachment. If this MAPK/ERK-dependent step is not achieved, the cell activates a new checkpoint mechanism, involving the reappearance of 4E-BP that maintains a low level of protein translation, thus saving cellular energy.


Asunto(s)
Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Sistema de Señalización de MAP Quinasas , Mitosis , Erizos de Mar/citología , Erizos de Mar/embriología , Animales , Evolución Biológica , Butadienos/farmacología , Proteína Quinasa CDC2/metabolismo , Proteínas Portadoras/metabolismo , División Celular/efectos de los fármacos , Cromatina/metabolismo , Ciclina B/metabolismo , Replicación del ADN/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fertilización/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Nitrilos/farmacología , Óvulo/citología , Óvulo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Erizos de Mar/efectos de los fármacos
2.
Mol Reprod Dev ; 83(12): 1070-1082, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27699901

RESUMEN

Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and ß, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (ka ) of 0.024 sec-1 , for the activation of XXmRNAcyclinB, and a critical time interval (t2 ) of 42 min. The proportion of XXmRNAcyclinB form was also calculated to be largely dominant over the mRNAcyclinB form. Regulation of cyclin B biosynthesis is an example of a select protein whose translation is controlled by pathways that are distinct from housekeeping proteins, even though both involve the same cap-dependent initiation pathway. Therefore, this model should help provide insight to the signaling utilized for the biosynthesis of cyclin B and other select proteins. Mol. Reprod. Dev. 83: 1070-1082, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ciclina B/biosíntesis , Fertilización , Modelos Biológicos , Óvulo/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero Almacenado/metabolismo , Animales , Femenino , Óvulo/citología , Erizos de Mar/metabolismo
3.
PLoS One ; 11(3): e0150318, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962866

RESUMEN

The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism.


Asunto(s)
Ciclina B/biosíntesis , Embrión no Mamífero/metabolismo , Fertilización/fisiología , Biosíntesis de Proteínas/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Fertilización/efectos de los fármacos , Indoles/farmacología , Factores de Iniciación de Péptidos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Purinas/farmacología , ARN Mensajero/metabolismo , Erizos de Mar/metabolismo
4.
J Steroid Biochem Mol Biol ; 149: 17-26, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25595040

RESUMEN

Estrogens are steroid hormones that play a pivotal role in growth, differentiation and function of reproductive and non-reproductive tissues, mediated through estrogen receptors (ERs). Estrogens are involved in different genomic and non-genomic cell signaling pathways which involve well-defined subcellular ER localizations. Thus, ER activity results from complex interplays between intrinsic binding properties and specific subcellular localization. Since these two factors are deeply intricate, we carried out, in a unique yeast cell context, a comparative study to better understand structure/function/subcellular distribution relationships. This was carried out by comparing two ERs: the human ER α subtype (hERα) and the short form of the α isoform of the rainbow trout ER (rtERαS). Their distinct binding properties to agonist and antagonist ligands and subcellular localizations were characterized in Saccharomyces cerevisiae yeast cells. An unexpected partial agonistic effect of ICI 182-780 was observed for rtERαS. Concomitant to distinct binding properties, distinct subcellular localizations were observed before and after ligand stimulation. Due to the unique cell context, the link between ERs intrinsic binding properties and subcellular localizations is partly unveiled and issues are hypothesized based on the role of cytoplasmic transient complexes which play a role in the ER cytoplasmic/nuclear partition, which in turn is critical for the recruitment of co-regulators in the nucleus.


Asunto(s)
Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/metabolismo , Proteínas de Peces/análisis , Proteínas de Peces/metabolismo , Oncorhynchus mykiss/metabolismo , Animales , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Proteínas de Peces/agonistas , Proteínas de Peces/genética , Humanos , Ligandos , Oncorhynchus mykiss/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/efectos de los fármacos , Transformación Genética
5.
Front Genet ; 5: 117, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24834072

RESUMEN

Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 384(4-5): 407-19, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21541759

RESUMEN

NME/NDPK family proteins are involved in the control of intracellular nucleotide homeostasis as well as in both physiological and pathological cellular processes, such as proliferation, differentiation, development, apoptosis, and metastasis dissemination, through mechanisms still largely unknown. One family member, NME1/NDPK-A, is a metastasis suppressor, yet the primary physiological functions of this protein are still missing. The purpose of this study was to identify new NME1/NDPK-A-dependent biological functions and pathways regulated by this gene in the liver. We analyzed the proteomes of wild-type and transgenic NME1-null mouse livers by combining two-dimensional gel electrophoresis and mass spectrometry (matrix-assisted laser desorption/ionization time of flight and liquid chromatography-tandem mass spectrometry). We found that the levels of three proteins, namely, phenylalanine hydroxylase, annexin IV, and elongation factor 1 Bα (EF-1Bα), were strongly reduced in the cytosolic fraction of NME1(-/-) mouse livers when compared to the wild type. This was confirmed by immunoblotting analysis. No concomitant reduction in the corresponding messenger RNAs or of total protein level was observed, however, suggesting that NME1 controls annexin IV and EF-1Bα amounts by post-translational mechanisms. NME1 deletion induced a change in the subcellular location of annexin IV in hepatocytes resulting in enrichment of this protein at the plasma membrane. We also observed a redistribution of EF-1Bα in NME1(-/-) hepatocytes to an intracytoplasmic compartment that colocalized with a marker of the reticulum endoplasmic. Finally, we found reduced expression of annexin IV coincident with decreased NME1 expression in a panel of different carcinoma cell lines. Taken together, our data suggest for the first time that NME1 might regulate the subcellular trafficking of annexin IV and EF-1Bα. The potential role of these proteins in metastatic dissemination is discussed.


Asunto(s)
Anexina A4/metabolismo , Hígado/enzimología , Nucleósido Difosfato Quinasas NM23/fisiología , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Anexina A4/genética , Western Blotting , Línea Celular Tumoral , Citosol/enzimología , Citosol/metabolismo , Electroforesis en Gel Bidimensional , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Nucleósido Difosfato Quinasas NM23/genética , Transporte de Proteínas , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
7.
Dev Biol ; 350(2): 476-83, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21167828

RESUMEN

Elongation factor 2 (eEF2) is the main regulator of peptide chain elongation in eukaryotic cells. Using sea urchin eggs and early embryos, two isoforms of eEF2 of respectively 80 and 83 kDa apparent molecular weight have been discovered. Both isoforms were identified by immunological analysis as well as mass spectrometry, and appeared to originate from a unique post-translationally modified protein. Accompanying the net increase in protein synthesis that occurs in early development, both eEF2 isoforms underwent dephosphorylation in the 15 min period following fertilization, in accordance with the active role of dephosphorylated eEF2 in regulation of protein synthesis. After initial dephosphorylation, the major 83 kDa isoform remained dephosphorylated while the 80 kDa isoform was progressively re-phosphorylated in a cell-cycle dependent fashion. In vivo inhibition of phosphorylation of the 80 kDa isoform impaired the completion of the first cell cycle of early development implicating the involvement of eEF2 phosphorylation in the exit from mitosis.


Asunto(s)
División Celular , Factor 2 de Elongación Peptídica/fisiología , Erizos de Mar/embriología , Animales , Fertilización , Peso Molecular , Óvulo/química , Fosforilación , Isoformas de Proteínas
8.
Mol Reprod Dev ; 77(1): 83-91, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19777548

RESUMEN

Fertilization of sea urchin eggs triggers a rise of protein synthesis mainly dependent on the cap-binding protein eIF4E, which is released from its repressor 4E-BP and associates with eIF4G. Association of eIF4G with eIF4E is a crucial event for the onset of the first mitotic division following fertilization. Artificial activation of unfertilized eggs with the calcium ionophore A23187 results in the activation of protein synthesis comparable to the one triggered by fertilization, while increasing the intracellular pH by ammonia treatment results in partial activation of protein synthesis. Nevertheless, artificial activation does not induce the mitotic division. Here we investigate the effect of calcium ionophore and ammonia treatment of unfertilized eggs on eIF4E and its two antagonist partners, 4E-BP and eIF4G. We show that the addition of calcium ionophore to unfertilized eggs induces permanent dissociation between eIF4E and 4E-BP, whereas a reversible dissociation of the complex occurs after ammonia treatment. The regulation of the complex correlates with permanent or reversible 4E-BP disappearance depending on the treatment used to trigger artificial activation. Furthermore, while calcium ionophore treatment of unfertilized eggs induces eIF4G modifications comparable to those observed following fertilization, ammonia treatment does not. These results suggest that ionophore and ammonia treatments of unfertilized eggs induce differential protein synthesis activation by targeting eIF4E availability and specific regulation through its two partners 4E-BP and eIF4G.


Asunto(s)
Amoníaco/metabolismo , Calcio/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Fertilización/fisiología , Óvulo/fisiología , Erizos de Mar/fisiología , Animales , Calcimicina/farmacología , Emetina/farmacología , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Ionóforos/farmacología , Óvulo/citología , Óvulo/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología
9.
Exp Cell Res ; 314(5): 961-8, 2008 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-18234192

RESUMEN

Translational control was investigated in sea urchin eggs and embryos in response to the DNA-damaging agent methyl methanesulfonate (MMS). We have shown in this report that exposure of sea urchin embryos to MMS induces drastic effects on protein synthesis activity, and on translation factors level, integrity and post-translational modifications. In response to the treatment of embryos by the DNA-damaging agent MMS, protein synthesis is inhibited independently of the translation inhibitor 4E-BP and in correlation with phosphorylation of the translation factor eIF2alpha subunit. Furthermore, a low molecular weight form of translation initiation factor eIF4G is detected correlatively with MMS-induced apoptosis. We propose that modifications of translation factors play an important role in protein synthesis modulation that occurs during DNA-damage induced apoptosis.


Asunto(s)
Apoptosis , Daño del ADN/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Animales , Embrión no Mamífero , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/análisis , Metilmetanosulfonato/farmacología , Óvulo , Fosforilación , Proteínas Ribosómicas/efectos de los fármacos , Erizos de Mar
10.
Chem Res Toxicol ; 21(2): 542-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18197632

RESUMEN

Using sea urchin early embryos as a pertinent model, chromium(III) provoked cell cycle arrest and induced apoptosis. The molecular machinery of translation initiation was investigated. Chromium provoked a time- and dose-dependent increase in the level of 4E-BP protein, the natural regulator of the cap-dependent initiation factor 4E (eIF4E). The 4E-BP increase was the result of 4E-BP stabilization and appeared functional for physiological eIF4E binding, removal of eIF4E from the initiation factor eIF4G, and almost full inhibition of cap-dependent translation in vivo. The protein 4E-BP may be involved in the biological pathway of apoptosis associated with the activation of the DNA-damaged checkpoint of the cell cycle.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Cloruros/toxicidad , Compuestos de Cromo/toxicidad , Daño del ADN , Embrión no Mamífero/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/genética , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/química , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/análisis , Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/análisis , Óvulo/química , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Unión Proteica , Erizos de Mar/embriología , Erizos de Mar/fisiología , Factores de Tiempo
11.
J Soc Biol ; 201(3): 297-306, 2007.
Artículo en Francés | MEDLINE | ID: mdl-18157082

RESUMEN

Gene expression regulation is crucial for organism survival. Each step has to be regulated, from the gene to the protein. mRNA can be stored in the cell without any direct translation. This process is used by the cell to control protein synthesis rapidly at the right place, at the right time. Protein synthesis costs a lot of energy for the cell, so that a precise control of this process is required. Translation initiation represents an important step to regulate gene expression. Many factors that can bind mRNA and recruit different partners are involved in the inhibition or stimulation of protein synthesis. Oceans contain an important diversity of organisms that are used as important models to analyse gene expression at the translational level. These are useful to study translational control in different physiological processes for instance cell cycle (meiosis during meiotic maturation of starfish oocytes, mitosis following fertilization of sea urchin eggs) or to understand nervous system mechanisms (aplysia). All these studies will help finding novel actors involved in translational control and will thus be useful to discover new targets for therapeutic treatments against human diseases.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Animales , Femenino , Fertilización , Humanos , Oocitos/fisiología , Agua de Mar
12.
J Soc Biol ; 201(3): 307-15, 2007.
Artículo en Francés | MEDLINE | ID: mdl-18157083

RESUMEN

mRNA translation is now recognized as a important regulatory step for gene expression in different physiological and pathophysiological processes including cell proliferation and apoptosis. B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of resting lymphocytes and defective apoptosis. The mRNA cap-binding protein eIF4E (eukaryotic Initiation Factor 4E) and its repressor 4E-BP (eIF4E Binding protein) are crucial translational regulators that have been involved in survival and apoptosis processes of cells. We have shown that the release of eIF4E from its translational repressor 4E-BP is an important event for the first mitotic division triggered by fertilization and that the degradation of 4E-BP is a new means to regulate 4E-BP function that has to be analyzed in other physiological and physiopathological processes. In this chapter, we describe recent advances illustrating the importance of eIF4E and 4E-BP in cancer processes, suggesting that these actors can be targeted for potential therapy against cancer in general and LLC in particular.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Apoptosis , Factor 4E Eucariótico de Iniciación/genética , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/fisiopatología , Modelos Genéticos , Oocitos/fisiología , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional
13.
J Soc Biol ; 201(3): 317-27, 2007.
Artículo en Francés | MEDLINE | ID: mdl-18157084

RESUMEN

Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology. Prevention and early diagnosis are two decisive elements of human cancer therapy.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN , Embrión no Mamífero/fisiología , Neoplasias/fisiopatología , Erizos de Mar/embriología , Animales , Evolución Biológica , Ciclo Celular/genética , Embrión no Mamífero/citología , Femenino , Masculino , Modelos Biológicos , Neoplasias/genética , Reproducción , Erizos de Mar/genética
14.
Dev Biol ; 300(1): 238-51, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17078944

RESUMEN

A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types. Almost all known cyclin-dependent kinases (CDKs) or CDK-like proteins have an orthologue in S. purpuratus; CDK3 is one exception, whereas CDK4 and 6 are represented by a single homologue, referred to as CDK4. While the complexity of the two families of mitotic kinases, Polo and Aurora, is close to that found in the nematode, the diversity of the NIMA-related kinases (NEK proteins) approaches that of vertebrates. Among the nine NEK proteins found in S. purpuratus, eight could be assigned orthologues in vertebrates, whereas the ninth is unique to sea urchins. Most known DNA replication, DNA repair and mitotic checkpoint genes are also present, as are homologues of the pRB (two) and p53 (one) tumor suppressors. Interestingly, the p21/p27 family of CDK inhibitors is represented by one homologue, whereas the INK4 and ARF families of tumor suppressors appear to be absent, suggesting that these evolved only in vertebrates. Our results suggest that, while the cell cycle control mechanisms known from other animals are generally conserved in sea urchin, parts of the machinery have diversified within the echinoderm lineage. The set of genes uncovered in this analysis of the S. purpuratus genome should enhance future research on cell cycle control and developmental regulation in this model.


Asunto(s)
Ciclo Celular/genética , ADN/metabolismo , Genoma , Erizos de Mar/clasificación , Erizos de Mar/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Quinasas Ciclina-Dependientes/genética , ADN/genética , Datos de Secuencia Molecular , Filogenia , Proteínas Quinasas/genética , Erizos de Mar/citología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
15.
Dev Biol ; 300(1): 293-307, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16959243

RESUMEN

Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.


Asunto(s)
Genoma , Biosíntesis de Proteínas , Erizos de Mar/genética , Secuencia de Aminoácidos , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Secuencia Conservada , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
FEBS Lett ; 580(11): 2755-60, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16647708

RESUMEN

The elongation factor eEF1B involved in protein translation was found to contain two isoforms of the eEF1Bdelta subunit in sea urchin eggs. The eEF1Bdelta2 isoform differs from eEF1Bdelta1 by a specific insert of 26 amino acids. Both isoforms are co-expressed in the cell and likely originate from a unique gene. The feature appears universal in metazoans as judged from in silico analysis in EST-databanks. The eEF1B components were co-immunoprecipitated by specific eEF1Bdelta2 antibodies. Quantification of the proteins in immunoprecipitates and on immunoblots demonstrates that eEF1Bdelta1 and eEF1Bdelta2 proteins are present in two subsets of eEF1B complex. We discuss and propose a model for the different subsets of eEF1B complex concomitantly present in the cell.


Asunto(s)
Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Erizos de Mar/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Peso Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 de Elongación Peptídica/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Erizos de Mar/embriología , Erizos de Mar/genética , Factores de Tiempo
17.
Biochim Biophys Acta ; 1759(1-2): 13-31, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16624425

RESUMEN

Translational regulation of gene expression in eukaryotes can rapidly and accurately control cell activity in response to stimuli or when rapidly dividing. There is increasing evidence for a key role of the elongation step in this process. Elongation factor-1 (eEF1), which is responsible for aminoacyl-tRNA transfer on the ribosome, is comprised of two entities: a G-protein named eEF1A and a nucleotide exchange factor, eEF1B. The multifunctional nature of eEF1A, as well as its oncogenic potential, is currently the subject of a number of studies. Until recently, less work has been done on eEF1B. This review describes the macromolecular complexity of eEF1B, its multiple phosphorylation sites and numerous cellular partners, which lead us to suggest an essential role for the factor in the control of gene expression, particularly during the cell cycle.


Asunto(s)
Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Complejos Multiproteicos , Factor 1 de Elongación Peptídica/genética , Fosforilación , Filogenia
18.
J Cell Biochem ; 99(1): 126-32, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16598776

RESUMEN

The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development. We show that two important cellular stresses, hypoxia and bleomycin prolonged checkpoint mobilization provoked the overexpression of the protein 4E-BP in developing sea urchin embryos. Hypoxia resulted after 1 h in a reversible gradual increase in the protein 4E-BP level. At 20 h, the protein 4E-BP had reached the level existing in the unfertilized eggs. Bleomycin used as a DNA-damaging agent for checkpoint activation, provoked cell cycle inhibition and after prolonged exposure (20 h), induced the expression of the protein 4E-BP. The effect of bleomycin on 4E-BP protein overexpression was dose-dependent between 0.4 and 1.2 mM. The role of the overexpression of the protein 4E-BP is discussed in relation with cellular stress responses.


Asunto(s)
Bleomicina/farmacología , Daño del ADN/fisiología , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Erizos de Mar/embriología
19.
Biochimie ; 87(9-10): 805-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15951098

RESUMEN

Translation is now recognized as an important process in the regulation of gene expression. During the cell cycle, translation is tightly regulated. Protein synthesis is necessary for entry into and progression through mitosis and conversely, modifications of translational activity are observed during the cell cycle. This review focuses on translational control during mitosis (or M-phase) and the role of CDK1/cyclin B, the universal cell cycle regulator implicated in the G2/M transition, in protein synthesis regulation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Mitosis/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ciclo Celular/genética , Ciclina B1 , Fase G2/genética , Fase G2/fisiología , Regulación de la Expresión Génica , Mitosis/fisiología , Fosforilación , Poliadenilación
20.
J Cell Sci ; 118(Pt 7): 1385-94, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15769855

RESUMEN

The eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) inhibit translation initiation by binding eIF4E and preventing recruitment of the translation machinery to mRNA. We have previously shown that fertilization of sea urchin eggs triggers eIF4E-4E-BP complex dissociation and 4E-BP degradation. Here, we show that microinjection of eIF4E-binding motif peptide into unfertilized eggs delays the onset of the first mitosis triggered by fertilization, demonstrating that dissociation of the eIF4E-4E-BP complex is functionally important for the first mitotic division in sea urchin embryos. We also show by gel filtration analyses that eIF4E is present in unfertilized eggs as an 80 kDa molecular mass complex containing 4E-BP and a new 4E-BP of 40 kDa. Fertilization triggers the dissociation of eIF4E from these two 4E-BPs and triggers the rapid recruitment of eIF4E into a high-molecular-mass complex. Release of eIF4E from the two 4E-BPs is correlated with a decrease in the total level of both 4E-BPs following fertilization. Abundance of the two 4E-BPs has been monitored during embryonic development. The level of the two proteins remains very low during the rapid cleavage stage of early development and increases 8 hours after fertilization. These results demonstrate that these two 4E-BPs are down- and upregulated during the embryonic development of sea urchins. Consequently, these data suggest that eIF4E availability to other partners represents an important determinant of the early development of sea urchin embryos.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Erizos de Mar/embriología , Erizos de Mar/metabolismo , Animales , Proteínas Portadoras/farmacología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Fertilización/fisiología , Peso Molecular , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Erizos de Mar/citología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...