Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 11(10): 2620-2637, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34078620

RESUMEN

Reduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined Smarcb1 genetic loss with SS18-SSX expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from SS18-SSX alone, indicating a defining role for SMARCB1 in synovial sarcoma. Smarcb1 silencing alone in mesenchyme modeled epithelioid sarcomagenesis. In mouse and human synovial sarcoma cells, SMARCB1 was identified within PBAF and canonical BAF (CBAF) complexes, coincorporated with SS18-SSX in the latter. Recombinant expression of CBAF components in human cells reconstituted CBAF subcomplexes that contained equal levels of SMARCB1 regardless of SS18 or SS18-SSX inclusion. In vivo, SS18-SSX expression led to whole-complex CBAF degradation, rendering increases in the relative prevalence of other BAF-family subtypes, PBAF and GBAF complexes, over time. Thus, SS18-SSX alters BAF subtypes levels/balance and genome distribution, driving synovial sarcomagenesis. SIGNIFICANCE: The protein level of BAF component SMARCB1 is reduced in synovial sarcoma but plays a defining role, incorporating into PBAF and SS18-SSX-containing canonical BAF complexes. Reduced levels of SMARCB1 derive from whole-complex degradation of canonical BAF driven by SS18-SSX, with relative increases in the abundance of other BAF-family subtypes.See related commentary by Maxwell and Hargreaves, p. 2375.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Proteína SMARCB1/genética , Sarcoma Sinovial/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sarcoma Sinovial/patología
2.
Analyst ; 142(1): 186-196, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27924983

RESUMEN

The ability to detect tuberculosis (TB) continues to be a global health care priority. This paper describes the development and preliminary assessment of the clinical accuracy of a heterogeneous immunoassay that integrates a serum pretreatment process with readout by surface-enhanced Raman scattering (SERS) for the low-level detection of mannose-capped lipoarabinomannan (ManLAM). ManLAM is a major virulence factor in the infectious pathology of Mycobacterium tuberculosis (Mtb) that has been found in the serum and other body fluids of infected patients. The effectiveness of ManLAM as a TB diagnostic marker, however, remains unproven for reasons not yet well understood. As reported herein, we have found that (1) ManLAM complexes with proteins and possibly other components in serum; (2) these complexes have a strongly detrimental impact on the ability to detect ManLAM using an immunoassay; (3) a simple pretreatment step can disrupt this complexation; and (4) disruption by pretreatment improves detection by 250×. We also describe the results from a preliminary assessment on the utility of serum pretreatment by running immunoassays on archived specimens from 24 TB-positive patients and 10 healthy controls. ManLAM was measurable in 21 of the 24 TB-positive specimens, but not in any of the 10 control specimens. These findings, albeit for a very small specimen set, translate to a clinical sensitivity of 87.5% and a clinical specificity of 100%. Together, these results both provide much needed evidence for the clinical utility of ManLAM as a TB marker, and demonstrate the potential utility of our overall approach to serve as a new strategy for the development of diagnostic tests for this disease.


Asunto(s)
Antígenos Bacterianos/sangre , Antígenos Bacterianos/metabolismo , Lipopolisacáridos/sangre , Lipopolisacáridos/metabolismo , Manosa/metabolismo , Mycobacterium tuberculosis/inmunología , Espectrometría Raman/métodos , Métodos Analíticos de la Preparación de la Muestra , Biomarcadores/sangre , Biomarcadores/metabolismo , Humanos , Espectrometría Raman/instrumentación
3.
Analyst ; 142(1): 177-185, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27934985

RESUMEN

Patient care and prevention of disease outbreaks rely heavily on the performance of diagnostic tests. These tests are typically carried out in serum, urine, and other complex sample matrices, but are often plagued by a number of matrix effects such as nonspecific adsorption and complexation with circulating proteins. This paper demonstrates the importance of sample pretreatment to overcome matrix effects, enabling the low-level detection of a disease marker for tuberculosis (TB). The impact of pretreatment is illustrated by detecting a cell wall component unique to mycobacteria, lipoarabinomannan (LAM). LAM is a major virulence factor in the infectious pathology of Mycobacterium tuberculosis (Mtb) and has been successfully detected in the body fluids of TB-infected individuals; however, its clinical sensitivity - identifying patients with active infection - remains problematic. This and the companion paper show that the detection of LAM in an immunoassay is plagued by its complexation with proteins and other components in serum. Herein, we present the procedures and results from an investigation of several different pretreatment schemes designed to disrupt complexation and thereby improve detection. These sample pretreatment studies, aimed at determining the optimal conditions for complex disruption, were carried out by using a LAM simulant derived from the nonpathogenic M. smegmatis, a mycobacterium often used as a model for Mtb. We have found that a perchloric acid-based pretreatment step improves the ability to detect this simulant by ∼1500× with respect to that in untreated serum. This paper describes the approach to pretreatment, how pretreatment improves the detection of the LAM simulant in human serum, and the results from a preliminary investigation to identify possible contributors to complexation by fractionating serum according to molecular weight. The companion paper applies this pretreatment approach to assays of TB patient samples.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Límite de Detección , Lipopolisacáridos/sangre , Lipopolisacáridos/química , Mycobacterium smegmatis/química , Tampones (Química) , Pared Celular/química , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Mycobacterium smegmatis/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...