Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Toxicol Methods ; 68(1): 82-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23567076

RESUMEN

INTRODUCTION: Chip-based automated patch clamp systems are widely used in drug development and safety pharmacology, allowing for high quality, high throughput screening at standardized experimental conditions. The merits of automation generally come at the cost of large amounts of cells needed, since cells are not targeted individually, but randomly positioned onto the chip aperture from cells in suspension. While cell usage is of little concern when using standard cell lines such as CHO or HEK cells, it becomes a crucial constraint with cells of limited availability, such as primary or otherwise rare and expensive cells, like induced pluripotent stem (IPS) cell-derived cardiomyocytes or neurons. METHODS: We established application protocols for CHO cells, IPS cell-derived neurons (iCell® Neurons, Cellular Dynamics International), cardiomyocytes (Cor.4U®, Axiogenesis) and pancreatic islet cells, minimizing cell usage for automated patch clamp recordings on Nanion's Patchliner. Use of 5 µl cell suspension per well for densities between 55,000 cells/ml and 400,000 cells/ml depending on cell type resulted in good cell capture. RESULTS: We present a new cell application procedure optimized for the Patchliner achieving>80% success rates for using as little as 300 to 2000 cells per well depending on cell type. We demonstrate that this protocol works for standard cell lines, as well as for stem cell-derived neurons and cardiomyocytes, and for primary pancreatic islet cells. We present recordings for these cell types, demonstrating that high data quality is not compromised by altered cell application. DISCUSSION: Our new cell application procedure achieves high success rates with unprecedentedly low cell numbers. Compared to other standard automated patch clamp systems we reduced the average amount of cells needed by more than 150 times. Reduced cell usage crucially improves cost efficiency for expensive cells and opens up automated patch clamp for primary cells of limited availability.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Neuronas/citología , Técnicas de Placa-Clamp/métodos , Animales , Automatización , Células CHO/citología , Cricetinae , Cricetulus , Humanos , Islotes Pancreáticos/citología , Ratones , Técnicas de Placa-Clamp/economía
2.
Plant J ; 74(3): 372-82, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23452338

RESUMEN

Under drought stress, the stress hormone ABA addresses the SnR kinase OST1 via its cytosolic receptor and the protein phosphatase ABI1. Upon activation, OST1 phosphorylates the guard cell S-type anion channel SLAC1. Arabidopsis ABI1 and OST1 loss-of-function mutants are characterized by an extreme wilting 'open stomata' phenotype. Given the fact that guard cells express both SLAC- and R-/QUAC-type anion channels, we questioned whether OST1, besides SLAC1, also controls the QUAC1 channel. In other words, are ABI1/OST1 defects preventing both of the guard cell anion channel types from operating properly in terms of stomatal closure? The activation of the R-/QUAC-type anion channel by ABA signaling kinase OST1 and phosphatase ABI1 was analyzed in two experimental systems: Arabidopsis guard cells and the plant cell-free background of Xenopus oocytes. Patch-clamp studies on guard cells show that ABA activates R-/QUAC-type currents of wild-type plants, but to a much lesser extent in those of abi1-1 and ost1-2 mutants. In the oocyte system the co-expression of QUAC1 and OST1 resulted in a pronounced activation of the R-type anion channel. These studies indicate that OST1 is addressing both S-/SLAC- and R-/QUAC-type guard cell anion channels, and explain why the ost1-2 mutant is much more sensitive to drought than single slac1 or quac1 mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de la Membrana/metabolismo , Células Vegetales/metabolismo , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Ácido Abscísico/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Proteínas de la Membrana/genética , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Células Vegetales/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Protoplastos/metabolismo , Transducción de Señal , Xenopus laevis/metabolismo
3.
Mol Plant ; 6(5): 1550-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23314055

RESUMEN

Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families­SLAC/SLAH and ALMT­are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation­deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Fluorescencia , Ácido Glutámico/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/química , Malatos/farmacología , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Transportadores de Anión Orgánico/química , Estomas de Plantas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Xenopus laevis
4.
Plant Cell Physiol ; 52(8): 1365-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21690176

RESUMEN

The stomatal complex of Zea mays is composed of two pore-forming guard cells and two adjacent subsidiary cells. For stomatal movement, potassium ions and anions are thought to shuttle between these two cell types. As potential cation transport pathways, K(+)-selective channels have already been identified and characterized in subsidiary cells and guard cells. However, so far the nature and regulation of anion channels in these cell types have remained unclear. In order to bridge this gap, we performed patch-clamp experiments with subsidiary cell and guard cell protoplasts. Voltage-independent anion channels were identified in both cell types which, surprisingly, exhibited different, cell-type specific dependencies on cytosolic Ca(2+) and pH. After impaling subsidiary cells of intact maize plants with microelectrodes and loading with BCECF [(2',7'-bis-(2-carboxyethyl)-5(and6)carboxyflurescein] as a fluorescent pH indicator, the regulation of ion channels by the cytosolic pH and the membrane voltage was further examined. Stomatal closure was found to be accompanied by an initial hyperpolarization and cytosolic acidification of subsidiary cells, while opposite responses were observed during stomatal opening. Our findings suggest that specific changes in membrane potential and cytosolic pH are likely to play a role in determining the direction and capacity of ion transport in subsidiary cells.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Zea mays/citología , Zea mays/fisiología , Ácido Abscísico/farmacología , Aniones , Calcio/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/efectos de la radiación , Concentración de Iones de Hidrógeno/efectos de los fármacos , Luz , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de la radiación , Especificidad de Órganos/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/ultraestructura , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Protoplastos/efectos de la radiación , Zea mays/efectos de los fármacos , Zea mays/ultraestructura
5.
Sci Signal ; 4(173): ra32, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21586729

RESUMEN

S-type anion channels are direct targets of abscisic acid (ABA) signaling and contribute to chloride and nitrate release from guard cells, which in turn initiates stomatal closure. SLAC1 was the first component of the guard cell S-type anion channel identified. However, we found that guard cells of Arabidopsis SLAC1 mutants exhibited nitrate conductance. SLAH3 (SLAC1 homolog 3) was also present in guard cells, and coexpression of SLAH3 with the calcium ion (Ca2+)-dependent kinase CPK21 in Xenopus oocytes mediated nitrate-induced anion currents. Nitrate, calcium, and phosphorylation regulated SLAH3 activity. CPK21-dependent SLAH3 phosphorylation and activation were blocked by ABI1, a PP2C-type protein phosphatase that is inhibited by ABA and inhibits the ABA signaling pathway in guard cells. We reconstituted the ABA-stimulated phosphorylation of the SLAH3 amino-terminal domain by CPK21 in vitro by including the ABA receptor-phosphatase complex RCAR1-ABI1 in the reactions. We propose that ABA perception by the complex consisting of ABA receptors of the RCAR/PYR/PYL family and ABI1 releases CPK21 from inhibition by ABI1, and then CPK21 is further activated by an increase in the cytosolic Ca2+ concentration, leading to its phosphorylation of SLAH3. Thus, the identification of SLAH3 as the nitrate-, calcium-, and ABA-sensitive guard cell anion channel provides insights into the relationship among stomatal response to drought, signaling by nitrate, and nitrate metabolism.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Canales Iónicos/fisiología , Estomas de Plantas/fisiología , Transducción de Señal , Animales , Aniones , Arabidopsis/citología , Fluorescencia , Péptidos y Proteínas de Señalización Intracelular , Nitratos/metabolismo , Fosforilación , Xenopus laevis
6.
Plant J ; 63(6): 1054-62, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626656

RESUMEN

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO2 -induced stomatal closure, as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and K(+) efflux via SLAC1 and GORK, respectively.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Electrofisiología , Transportadores de Anión Orgánico/genética , Estomas de Plantas/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(50): 21425-30, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19955405

RESUMEN

In response to drought stress the phytohormone ABA (abscisic acid) induces stomatal closure and, therein, activates guard cell anion channels in a calcium-dependent as well as-independent manner. Two key components of the ABA signaling pathway are the protein kinase OST1 (open stomata 1) and the protein phosphatase ABI1 (ABA insensitive 1). The recently identified guard cell anion channel SLAC1 appeared to be the key ion channel in this signaling pathway but remained electrically silent when expressed heterologously. Using split YFP assays, we identified OST1 as an interaction partner of SLAC1 and ABI1. Upon coexpression of SLAC1 with OST1 in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Integration of ABI1 into the SLAC1/OST1 complex, however, prevented SLAC1 activation. Our studies demonstrate that SLAC1 represents the slow, deactivating, weak voltage-dependent anion channel of guard cells controlled by phosphorylation/dephosphorylation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Canales Iónicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Sequías , Proteínas de la Membrana , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...