Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 36(26): 6881-91, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358447

RESUMEN

UNLABELLED: Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex result in an additional interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing Munc18-1 mutants designed to either perturb the extension of helix 12 (Δ324-339), block its interaction with synaptobrevin-2 (L348R), or extend the helix to promote coil-coil interactions with other proteins (P335A). The mutants rescued vesicle docking and syntaxin-1 targeting to the plasma membrane, with the exception of P335A that only supported partial syntaxin-1 targeting. Disruptive mutations (L348R or Δ324-339) lowered the secretory amplitude by decreasing vesicle priming, whereas P335A markedly increased priming and secretory amplitude. The mutants displayed unchanged kinetics and Ca(2+) dependence of fusion, indicating that the mutations specifically affect the vesicle priming step. Mutation of a nearby tyrosine (Y337A), which interacts with closed syntaxin-1, mildly increased secretory amplitude. This correlated with results from an in vitro fusion assay probing the functions of Munc18-1, indicating an easier transition to the extended state in the mutant. Our findings support the notion that a conformational transition within the Munc18-1 domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and vesicle priming. SIGNIFICANCE STATEMENT: The essential postdocking role of Munc18-1 in vesicular exocytosis has remained elusive, but recent data led to the hypothesis that the extension of helix 12 in Munc18 within domain 3a leads to synaptobrevin-2/VAMP2 interaction and SNARE complex formation. Using both lack-of-function and gain-of-function mutants, we here report that the conformation of helix 12 predicts vesicle priming and secretory amplitude in living chromaffin cells. The effects of mutants on secretion could not be explained by differences in syntaxin-1 chaperoning/localization or vesicle docking, and the fusion kinetics and calcium dependence were unchanged, indicating that the effect of helix 12 extension is specific for the vesicle-priming step. We conclude that a conformational change within helix 12 is responsible for the essential postdocking role of Munc18-1 in neurosecretion.


Asunto(s)
Proteínas Munc18/metabolismo , Estructura Terciaria de Proteína/fisiología , Vesículas Secretoras/metabolismo , Sinteninas/metabolismo , Animales , Membrana Celular/ultraestructura , Células Cultivadas , Células Cromafines/metabolismo , Células Cromafines/ultraestructura , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas Munc18/genética , Mutación/genética , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/ultraestructura , Sinteninas/genética , Transfección , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
2.
J Neurosci ; 35(42): 14172-82, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490858

RESUMEN

Synaptotagmin-1 (Syt1) is the principal Ca(2+) sensor for vesicle fusion and is also essential for vesicle docking in chromaffin cells. Docking depends on interactions of the Syt1-C2B domain with the t-SNARE SNAP25/Syntaxin1 complex and/or plasma membrane phospholipids. Here, we investigated the role of the positively charged "bottom" region of the C2B domain, proposed to help crosslink membranes, in vesicle docking and secretion in mouse chromaffin cells and in cell-free assays. We expressed a double mutation shown previously to interfere with lipid mixing between proteoliposomes and with synaptic transmission, Syt1-R398/399Q (RQ), in syt1 null mutant cells. Ultrastructural morphometry revealed that Syt1-RQ fully restored the docking defect observed previously in syt1 null mutant cells, similar to wild type Syt1 (Syt1-wt). Small unilamellar lipid vesicles (SUVs) that contained the v-SNARE Synaptobrevin2 and Syt1-R398/399Q also docked to t-SNARE-containing giant vesicles (GUVs), similar to Syt1-wt. However, unlike Syt1-wt, Syt1-RQ-induced docking was strictly PI(4,5)P2-dependent. Unlike docking, neither synchronized secretion in chromaffin cells nor Ca(2+)-triggered SUV-GUV fusion was restored by the Syt1 mutants. Finally, overexpressing the RQ-mutant in wild type cells produced no effect on either docking or secretion. We conclude that the positively charged bottom region in the C2B domain--and, by inference, Syt1-mediated membrane crosslinking--is required for triggering fusion, but not for docking. Secretory vesicles dock by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. The R398/399 mutations selectively disrupt the latter and hereby help to discriminate protein regions involved in different aspects of Syt1 function in docking and fusion. SIGNIFICANCE STATEMENT: This study provides new insights in how the two opposite sides of the C2B domain of Synaptotagmin-1 participate in secretory vesicle fusion, and in more upstream steps, especially vesicle docking. We show that the "bottom" surface of the C2B domain is required for triggering fusion, but not for docking. Synaptotagmin-1 promotes docking by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. Mutations in the C2B bottom surface (R398/399) selectively disrupt the latter. These mutations help to discriminate protein regions involved in different aspects of Synaptotagmin-1 function in docking and fusion.


Asunto(s)
Células Cromafines/metabolismo , Mutación/genética , Vesículas Sinápticas/genética , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Cromafines/ultraestructura , Embrión de Mamíferos , Femenino , Masculino , Fusión de Membrana/genética , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Proteínas SNARE/metabolismo , Vías Secretoras/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura
3.
J Appl Physiol (1985) ; 104(4): 1154-60, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18218911

RESUMEN

The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects (n = 11) received a single Epo injection of 15,000 IU (double blinded, cross over, placebo). A single Epo injection reduced myoglobin and increased transferrin receptor and MRF-4 mRNA content within 10 h after injection. Plasma hormones remained unaltered. Capillarization and fiber hypertrophy was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells. In conclusion, the Epo-R is present in the vasculature and myocytes in human skeletal muscle, suggesting a role in both cell types. In accordance, a single injection of Epo regulates myoglobin, MRF-4, and transferrin receptor mRNA levels. However, in contrast to our hypothesis, prolonged Epo administration had no apparent effect on capillarization or muscle fiber hypertrophy.


Asunto(s)
Eritropoyetina/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Receptores de Eritropoyetina/metabolismo , Adulto , Capilares/efectos de los fármacos , Capilares/ultraestructura , Proliferación Celular , Cartilla de ADN , ADN Complementario/biosíntesis , ADN Complementario/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Eritropoyetina/administración & dosificación , Hormonas/sangre , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculo Esquelético/citología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...