Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Technol Health Care ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39269866

RESUMEN

BACKGROUND: A daily activity routine is vital for overall health and well-being, supporting physical and mental fitness. Consistent physical activity is linked to a multitude of benefits for the body, mind, and emotions, playing a key role in raising a healthy lifestyle. The use of wearable devices has become essential in the realm of health and fitness, facilitating the monitoring of daily activities. While convolutional neural networks (CNN) have proven effective, challenges remain in quickly adapting to a variety of activities. OBJECTIVE: This study aimed to develop a model for precise recognition of human activities to revolutionize health monitoring by integrating transformer models with multi-head attention for precise human activity recognition using wearable devices. METHODS: The Human Activity Recognition (HAR) algorithm uses deep learning to classify human activities using spectrogram data. It uses a pretrained convolution neural network (CNN) with a MobileNetV2 model to extract features, a dense residual transformer network (DRTN), and a multi-head multi-level attention architecture (MH-MLA) to capture time-related patterns. The model then blends information from both layers through an adaptive attention mechanism and uses a SoftMax function to provide classification probabilities for various human activities. RESULTS: The integrated approach, combining pretrained CNN with transformer models to create a thorough and effective system for recognizing human activities from spectrogram data, outperformed these methods in various datasets - HARTH, KU-HAR, and HuGaDB produced accuracies of 92.81%, 97.98%, and 95.32%, respectively. This suggests that the integration of diverse methodologies yields good results in capturing nuanced human activities across different activities. The comparison analysis showed that the integrated system consistently performs better for dynamic human activity recognition datasets. CONCLUSION: In conclusion, maintaining a routine of daily activities is crucial for overall health and well-being. Regular physical activity contributes substantially to a healthy lifestyle, benefiting both the body and the mind. The integration of wearable devices has simplified the monitoring of daily routines. This research introduces an innovative approach to human activity recognition, combining the CNN model with a dense residual transformer network (DRTN) with multi-head multi-level attention (MH-MLA) within the transformer architecture to enhance its capability.

2.
Technol Health Care ; 32(3): 1991-2007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38339946

RESUMEN

BACKGROUND: Coronary heart disease (CHD) is one of the deadliest diseases and a risk prediction model for cardiovascular conditions is needed. Due to the huge number of features that lead to heart problems, it is often difficult for an expert to evaluate these huge features into account. So, there is a need of appropriate feature selection for the given CHD dataset. For early CHD detection, deep learning modes (DL) show promising results in the existing studies. OBJECTIVE: This study aimed to develop a deep convolution neural network (CNN) model for classification with a selected number of efficient features using the LASSO (least absolute shrinkage and selection operator) technique. Also, aims to compare the model with similar studies and analyze the performance of the proposed model using accuracy measures. METHODS: The CHD dataset of NHANES (National Health and Nutritional Examination Survey) was examined with 49 features using LASSO technique. This research work is an attempt to apply an improved CNN model for the classification of the CHD dataset with huge features CNN model with feature extractor consists of a fully connected layer with two convolution 1D layers, and classifier part consists of two fully connected layers with SoftMax function was trained on this dataset. Metrics like accuracy recall, specificity, and ROC were used for the evaluation of the proposed model. RESULTS: The feature selection was performed by applying the LASSO model. The proposed CNN model achieved 99.36% accuracy, while previous studies model achieved over 80 to 92% accuracy. CONCLUSION: The application of the proposed CNN with the LASSO model for the classification of CHD can speed up the diagnosis of CHD and appears to be effective in predicting cardiovascular disease based on risk features.


Asunto(s)
Enfermedad Coronaria , Aprendizaje Profundo , Humanos , Enfermedad Coronaria/clasificación , Enfermedad Coronaria/diagnóstico , Redes Neurales de la Computación , Masculino , Femenino , Persona de Mediana Edad , Encuestas Nutricionales , Curva ROC , Anciano , Medición de Riesgo/métodos
3.
Technol Health Care ; 32(2): 1199-1210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37270826

RESUMEN

BACKGROUND: Lung cancer (LC) is a harmful malignant tumor and potentially lethal illness. Therefore, early detection of LC is an urgent need, and dependent on the type of histology and the type of disease. The use of deep learning algorithms (DL) is required to analyse the histopathology images of LC and make treatment decisions accordingly. OBJECTIVE: This study aimed to apply pretrained EfficientNetB7 model to facilitate the process of classifying LC histopathology images as primary malignancy categories (adenocarcinoma, squamous cell carcinoma and large cell carcinoma) for early treatment of LC patients. Also, aims to analyse the performance of the proposed model using the accuracy measure. METHODS: The dataset of 15000 histopathology images of lung cancer were examined. EfficientNetB7, a special type of convolution neural network (CNN), pretrained with ImageNet for transfer learning were trained on this dataset. Accuracy metric was used for the evaluation of the proposed model RESULTS: The feature extraction was performed by applying transfer learning using EfficientNetB7 as pretrained model. The proposed model achieved 99.77% accuracy, while previous studies model achieved over 90 to 99% accuracy. CONCLUSION: The employment of CNN based EfficientNetB7 model for the classification of LC based on histopathology images can speed up the diagnosis of LC and reduce the burden on pathologists for the early treatment of patients.


Asunto(s)
Lactancia Materna , Cognición , Embarazo , Femenino , Humanos , Investigación Cualitativa
4.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831474

RESUMEN

In recent years, breast cancer detection is an important area of concentration towards curative image dispensation and exploration. Detection of a disease at an early stage is an important factor in taking it to the next level of treatment. Accuracy plays an important role in the detection of disease. COA-T2FCM (Chimp Optimization Algorithm Based Type-2 Intuitionistic Fuzzy C-Means Clustering) is constructed for detection of such malignancy with the highest accuracy in this paper. The proposed detection process is designed with the combination of type-2 intuitionistic fuzzy c-means clustering in addition to oppositional function. In the type-2 intuitionistic fuzzy c-means clustering, the efficient cluster center can be preferred using the chimp optimization algorithm. Initially, the objective function of the type-2 intuitionistic fuzzy c-means clustering is considered. The chimp optimization algorithm is utilized to optimize the cluster center and fuzzifier in the clustering method. The projected technique is implemented, and in addition, performance metrics such as specificity, sensitivity, accuracy, Jaccard Similarity Index (JSI), and Dice Similarity Coefficient (DSC) are assessed. The projected technique is compared with the conventional technique such as fuzzy c means clustering and k mean clustering methods. The resulting method was also compared with existing methods to ensure the accuracy in the proposed method. The proposed algorithm is tested for its effectiveness on the mammogram images of the three different datasets collected from the Mini-Mammographic Image Analysis Society (Mini-MIAS), the Digital Database for Screening Mammography (DDSM), and Inbreast. The accuracy and Jaccard index score are generally used to measure the similarity between the proposed output and the actual cancer affected regions from the image considered. On an average the proposed method achieved an accuracy of 97.29% and JSI of 95.

5.
Biomedicines ; 11(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672656

RESUMEN

Alzheimer's disease (AD) is mainly a neurodegenerative sickness. The primary characteristics are neuronal atrophy, amyloid deposition, and cognitive, behavioral, and psychiatric disorders. Numerous machine learning (ML) algorithms have been investigated and applied to AD identification over the past decades, emphasizing the subtle prodromal stage of mild cognitive impairment (MCI) to assess critical features that distinguish the disease's early manifestation and instruction for early detection and treatment. Identifying early MCI (EMCI) remains challenging due to the difficulty in distinguishing patients with cognitive normality from those with MCI. As a result, most classification algorithms for these two groups perform poorly. This paper proposes a hybrid Deep Learning Approach for the early detection of Alzheimer's disease. A method for early AD detection using multimodal imaging and Convolutional Neural Network with the Long Short-term memory algorithm combines magnetic resonance imaging (MRI), positron emission tomography (PET), and standard neuropsychological test scores. The proposed methodology updates the learning weights, and Adam's optimization is used to increase accuracy. The system has an unparalleled accuracy of 98.5% in classifying cognitively normal controls from EMCI. These results imply that deep neural networks may be trained to automatically discover imaging biomarkers indicative of AD and use them to identify the illness accurately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...