Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0307732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208269

RESUMEN

In this research, we developed an epidemic model with a combination of Atangana-Baleanu Caputo derivative and classical operators for the hybrid operator's memory effects, allowing us to observe the dynamics and treatment effects at different time phases of syphilis infection caused by sex. The developed model properties, which take into account linear growth and Lipschitz requirements relating the rate of effects within its many sub-compartments according to the equilibrium points, include positivity, unique solution, exitance, and boundedness in the feasible domain. After conducting sensitivity analysis with various parameters influencing the model for the piecewise fractional operator, the reproductive number R0 for the biological viability of the model is determined. Generalized Ulam-Hyers stability results are employed to preserve global stability. The investigated model thus has a unique solution in the specified subinterval in light of the Banach conclusion, and contraction as a consequence holds for the Atangana-Baleanu Caputo derivative with classical operators. The piecewise model that has been suggested has a maximum of one solution. For numerical solutions, piecewise fractional hybrid operators at various fractional order values are solved using the Newton polynomial interpolation method. A comparison is also made between Caputo operator and the piecewise derivative proposed operator. This work improves our knowledge of the dynamics of syphilis and offers a solid framework for assessing the effectiveness of interventions for planning and making decisions to manage the illness.


Asunto(s)
Epidemias , Sífilis , Humanos , Sífilis/epidemiología , Sífilis/transmisión , Masculino , Modelos Epidemiológicos , Femenino , Número Básico de Reproducción
2.
Cureus ; 15(10): e47282, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021644

RESUMEN

The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting ß-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.

3.
Cureus ; 15(10): e47281, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021759

RESUMEN

Apert syndrome (AS), also known as type I acrocephalosyndactyly, is a rare congenital condition characterized by craniosynostosis resulting from missense mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. This comprehensive review delves into AS, covering its clinical manifestations, genetics, diagnosis, medical management, psychosocial considerations, and future research directions. AS presents with distinct features, including a brachycephalic skull, midface hypoplasia, and limb anomalies such as syndactyly. It follows an autosomal dominant inheritance pattern with mutations in the FGFR2 gene. Prenatal diagnosis is possible through advanced imaging techniques and molecular testing. The multidisciplinary approach to AS management involves surgical interventions, orthodontics, and psychological support. Although no curative treatment exists, early interventions can significantly improve function and aesthetics. The quality of life for AS patients is influenced by psychosocial factors, necessitating comprehensive support for both patients and their families. Future research directions include gene therapy, understanding cellular responses to FGFR2 mutations, and addressing genetic heterogeneity. Collaborative efforts are vital to advancing knowledge about AS and its genetic underpinnings. Overall, this review serves as a valuable resource for healthcare professionals, educators, and researchers, contributing to a deeper understanding of AS and facilitating advancements in diagnosis and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...