Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(10): 2682-2689, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427025

RESUMEN

The growing demand for energy has increased the need for battery storage, with lithium-ion batteries being widely used. Among those, nickel-rich layered lithium transition metal oxides [LiNi1-x-yCoxMnyO2 NCM (1 - x - y > 0.5)] are some of the promising cathode materials due to their high specific capacities and working voltages. In this study, we demonstrate that a thin, simple coating of polyalanine chiral molecules improves the performance of Ni-rich cathodes. The chiral organic coating of the active material enhances the discharge capacity and rate capability. Specifically, NCM811 and NCM622 electrodes coated with chiral molecules exhibit lower voltage hysteresis and better rate performance, with a capacity improvement of >10% at a 4 C discharge rate and an average improvement of 6%. We relate these results to the chirally induced spin selectivity effect that enables us to reduce the resistance of the electrode interface and to reduce dramatically the overpotential needed for the chemical process by aligning the electron spins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA