Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
AJR Am J Roentgenol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230403

RESUMEN

The interpretation of clinical oncologic PET studies has historically used static reconstructions based on SUVs. SUVs and SUV-based images have important limitations, including dependence on uptake times and reduced conspicuity of tracer-avid lesions in organs with high background uptake. The acquisition of dynamic PET images enables additional PET reconstructions via Patlak modeling, which assumes that a tracer is irreversibly trapped by tissues of interest. The resulting multiparametric PET images capture a tracer's net trapping rate (Ki) and apparent volume of distribution (VD), separating the contributions of bound and free tracer fractions to the PET signal captured in the SUV. Potential benefits of multiparametric PET include higher quantitative stability, superior lesion conspicuity, and greater accuracy for differentiating malignant and benign lesions. However, the imaging protocols necessary for multiparametric PET are inherently more complex and time-intensive, despite the recent introduction of automated or semiautomated scanner-based reconstruction packages. In this Review, we examine the current state of multiparametric PET in whole-body oncologic imaging. We summarize the Patlak methodology and relevant tracer kinetics, discuss clinical workflows and protocol considerations, and highlight clinical challenges and opportunities. We aim to help oncologic imagers make informed decisions about whether to implement multiparametric PET in their clinical practices.

2.
EJNMMI Res ; 14(1): 31, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528239

RESUMEN

BACKGROUND: Accurate diagnosis of axillary lymph node (ALN) metastases is essential for prognosis and treatment planning in breast cancer. Evaluation of ALN is done by ultrasound, which is limited by inter-operator variability, and by sentinel lymph node biopsy and/or ALN dissection, none of which are without risks and/or long-term complications. It is known that conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limited sensitivity for ALN metastases. However, a recently developed dynamic whole-body (D-WB) [18F]FDG PET/CT scanning protocol, allowing for imaging of tissue [18F]FDG metabolic rate (MRFDG), has been shown to have the potential to increase lesion detectability. The study purpose was to examine detectability of malignant lesions in D-WB [18F]FDG PET/CT compared to conventional [18F]FDG PET/CT. RESULTS: This study prospectively included ten women with locally advanced breast cancer who were referred for an [18F]FDG PET/CT as part of their diagnostic work-up. They all underwent D-WB [18F]FDG PET/CT, consisting of a 6 min single bed dynamic scan over the chest region started at the time of tracer injection, a 64 min dynamic WB PET scan consisting of 16 continuous bed motion passes, and finally a contrast-enhanced CT scan, with generation of MRFDG parametric images. Lesion visibility was assessed by tumor-to-background and contrast-to-noise ratios using volumes of interest isocontouring tumors with a set limit of 50% of SUVmax and background volumes placed in the vicinity of tumors. Lesion visibility was best in the MRFDG images, with target-to-background values 2.28 (95% CI: 2.04-2.54) times higher than target-to-background values in SUV images, and contrast-to-noise values 1.23 (95% CI: 1.12-1.35) times higher than contrast-to-noise values in SUV images. Furthermore, five imaging experts visually assessed the images and three additional suspicious lesions were found in the MRFDG images compared to SUV images; one suspicious ALN, one suspicious parasternal lymph node, and one suspicious lesion located in the pelvic bone. CONCLUSIONS: D-WB [18F]FDG PET/CT with MRFDG images show potential for improved lesion detectability compared to conventional SUV images in locally advanced breast cancer. Further validation in larger cohorts is needed. CLINICAL TRIAL REGISTRATION: The trial is registered in clinicaltrials.gov, NCT05110443, https://www. CLINICALTRIALS: gov/study/NCT05110443?term=NCT05110443&rank=1 .

3.
EJNMMI Res ; 14(1): 24, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436824

RESUMEN

BACKGROUND: Correct classification of estrogen receptor (ER) status is essential for prognosis and treatment planning in patients with breast cancer (BC). Therefore, it is recommended to sample tumor tissue from an accessible metastasis. However, ER expression can show intra- and intertumoral heterogeneity. 16α-[18F]fluoroestradiol ([18F]FES) Positron Emission Tomography/Computed Tomography (PET/CT) allows noninvasive whole-body (WB) identification of ER distribution and is usually performed as a single static image 60 min after radiotracer injection. Using dynamic whole-body (D-WB) PET imaging, we examine [18F]FES kinetics and explore whether Patlak parametric images ( K i ) are quantitative and improve lesion visibility. RESULTS: This prospective study included eight patients with metastatic ER-positive BC scanned using a D-WB PET acquisition protocol. The kinetics of [18F]FES were best characterized by the irreversible two-tissue compartment model in tumor lesions and in the majority of organ tissues. K i values from Patlak parametric images correlated with K i values from the full kinetic analysis, r2 = 0.77, and with the semiquantitative mean standardized uptake value (SUVmean), r2 = 0.91. Furthermore, parametric K i images had the highest target-to-background ratio (TBR) in 162/164 metastatic lesions and the highest contrast-to-noise ratio (CNR) in 99/164 lesions compared to conventional SUV images. TBR was 2.45 (95% confidence interval (CI): 2.25-2.68) and CNR 1.17 (95% CI: 1.08-1.26) times higher in K i images compared to SUV images. These quantitative differences were seen as reduced background activity in the K i images. CONCLUSION: [18F]FES uptake is best described by an irreversible two-tissue compartment model. D-WB [18F]FES PET/CT scans can be used for direct reconstruction of parametric K i images, with superior lesion visibility and K i values comparable to K i values found from full kinetic analyses. This may aid correct ER classification and treatment decisions. Trial registration ClinicalTrials.gov: NCT04150731, https://clinicaltrials.gov/study/NCT04150731.

4.
Brain ; 147(1): 255-266, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37975822

RESUMEN

Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad por Cuerpos de Lewy , Humanos , Masculino , Anciano , Femenino , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/patología , Estudios Transversales , Enfermedades del Sistema Nervioso Autónomo/diagnóstico por imagen , Enfermedades del Sistema Nervioso Autónomo/etiología , Páncreas/patología , Colinérgicos , Colon/patología
5.
EJNMMI Res ; 13(1): 104, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032409

RESUMEN

BACKGROUND: Until recently, quantitation of the net influx of 2-[18F]fluorodeoxyglucose (FDG) to brain (Ki) and the cerebrometabolic rate for glucose (CMRglc) required serial arterial blood sampling in conjunction with dynamic positron emission tomography (PET) recordings. Recent technical innovations enable the identification of an image-derived input function (IDIF) from vascular structures, but are frequently still encumbered by the need for interrupted sequences or prolonged recordings that are seldom available outside of a research setting. In this study, we tested simplified methods for quantitation of FDG-Ki by linear graphic analysis relative to the descending aorta IDIF in oncology patients examined using a Biograph Vision 600 PET/CT with continuous bed motion (Aarhus) or using a recently installed Biograph Vision Quadra long-axial field-of-view (FOV) scanner (Bern). RESULTS: Correlation analysis of the coefficients of a tri-exponential decomposition of the IDIFs measured during 67 min revealed strong relationships among the total area under the curve (AUC), the terminal normalized arterial integral (theta(52-67 min)), and the terminal image-derived arterial FDG concentration (Ca(52-67 min)). These relationships enabled estimation of the missing AUC from late recordings of the IDIF, from which we then calculated FDG-Ki in brain by two-point linear graphic analysis using a population mean ordinate intercept and the single late frame. Furthermore, certain aspects of the IDIF data from Aarhus showed a marked age-dependence, which was not hitherto reported for the case of FDG pharmacokinetics. CONCLUSIONS: The observed interrelationships between pharmacokinetic parameters in the IDIF measured during the PET recording support quantitation of FDG-Ki in brain using a single averaged frame from the interval 52-67 min post-injection, with minimal error relative to calculation from the complete dynamic sequences.

6.
JHEP Rep ; 5(11): 100916, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37886434

RESUMEN

Background & Aims: In Wilson disease (WD), copper accumulation and increased non-ceruloplasmin-bound copper in plasma lead to liver and brain pathology. To better understand the fate of non-ceruloplasmin-bound copper, we used PET/CT to examine the whole-body distribution of intravenously injected 64-copper (64Cu). Methods: Eight patients with WD, five heterozygotes, and nine healthy controls were examined by dynamic PET/CT for 90 min and static PET/CT up to 20 h after injection. We measured 64Cu activity in blood and tissue and quantified the kinetics by compartmental analysis. Results: Initially, a large fraction of injected 64Cu was distributed to extrahepatic tissues, especially skeletal muscle. Thus, across groups, extrahepatic tissues accounted for 45-58% of the injected dose (%ID) after 10 min, and 45-55% after 1 h. Kinetic analysis showed rapid exchange of 64Cu between blood and muscle as well as adipose tissue, with 64Cu retention in a secondary compartment, possibly mitochondria. This way, muscle and adipose tissue may protect the brain from spikes in non-ceruloplasmin-bound copper. Tiny amounts of cerebral 64Cu were detected (0.2%ID after 90 min and 0.3%ID after 6 h), suggesting tight control of cerebral copper in accordance with a cerebral clearance that is 2-3-fold lower than in muscle. Compared to controls, patients with WD accumulated more hepatic copper 6-20 h after injection, and also renal copper at 6 h. Conclusion: Non-ceruloplasmin-bound copper is initially distributed into a number of tissues before being redistributed slowly to the eliminating organ, the liver. Cerebral uptake of copper is extremely slow and likely highly regulated. Our findings provide new insights into the mechanisms of copper control. Impact and implications: Maintaining non-ceruloplasmin-bound copper within the normal range is an important treatment goal in WD as this "free" copper is considered toxic to the liver and brain. We found that intravenously injected non-ceruloplasmin-bound copper quickly distributed to a number of tissues, especially skeletal muscle, subcutaneous fat, and the liver, while uptake into the brain was slow. This study offers new insights into the mechanisms of copper control, which may encourage further research into potential new treatment targets. Clinical trial number: 2016-001975-59.

7.
EJNMMI Radiopharm Chem ; 8(1): 12, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314530

RESUMEN

BACKGROUND: Ketones are increasingly recognized as an important and possibly oxygen sparing source of energy in vital organs such as the heart, the brain and the kidneys. Drug treatments, dietary regimens and oral ketone drinks designed to deliver ketones for organ and tissue energy production have therefore gained popularity. However, whether ingested ketones are taken up by various extra-cerebral tissues and to what extent is still largely unexplored. It was therefore the aim of this study to use positron emission tomography (PET) to explore the whole body dosimetry, biodistribution and kinetics of the ketone tracer (R)-[1-11C]ß-hydroxybutyrate ([11C]OHB). Six healthy subjects (3 women and 3 men) underwent dynamic PET studies after both intravenous (90 min) and oral (120 min) administration of [11C]OHB. Dosimetry estimates of [11C]OHB was calculated using OLINDA/EXM software, biodistribution was assessed visually and [11C]OHB tissue kinetics were obtained using an arterial input function and tissue time-activity curves. RESULTS: Radiation dosimetry yielded effective doses of 3.28 [Formula: see text]Sv/MBq (intravenous administration) and 12.51 [Formula: see text]Sv/MBq (oral administration). Intravenous administration of [11C]OHB resulted in avid radiotracer uptake in the heart, liver, and kidneys, whereas lesser uptake was observed in the salivary glands, pancreas, skeletal muscle and red marrow. Only minimal uptake was noted in the brain. Oral ingestion of the tracer resulted in rapid radiotracer appearance in the blood and radiotracer uptake in the heart, liver and kidneys. In general, [11C]OHB tissue kinetics after intravenous administration were best described by a reversible 2-tissue compartmental model. CONCLUSION: The PET radiotracer [11C]OHB shows promising potential in providing imaging data on ketone uptake in various physiologically relevant tissues. As a result, it may serve as a safe and non-invasive imaging tool for exploring ketone metabolism in organs and tissues of both patients and healthy individuals. Trial registration Clinical trials, NCT0523812, Registered February 10th 2022, https://clinicaltrials.gov/ct2/show/NCT05232812?cond=NCT05232812&draw=2&rank=1 .

8.
Semin Nucl Med ; 53(5): 558-569, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268499

RESUMEN

Cell lines are essential in biomedical research due to their adaptability and precise simulation of physiological and pathophysiological conditions. Cell culture techniques have greatly advanced our understanding of biology in various fields and are widely regarded as a reliable and durable tool. Their diverse applications make them indispensable in scientific research. Radiation-emitting compounds are commonly used in cell culture research to investigate biological processes. Radiolabeled compounds are utilized to study cell function, metabolism, molecular markers, receptor density, drug binding and kinetics, as well as to analyze the direct interaction of radiotracers with target organ cells. This allows for the examination of normal physiology and disease states. The In Vitro system simplifies the study and filters out nonspecific signals from the In Vivo environment, leading to more specific results. Moreover, cell cultures offer ethical advantages when evaluating new tracers and drugs in preclinical studies. While cell experiments cannot entirely replace animal experiments, they reduce the need for live animals in experimentation.


Asunto(s)
Investigación Biomédica , Medicina Nuclear , Animales , Técnicas de Cultivo de Célula , Cintigrafía , Proyectos de Investigación
9.
J Vis Exp ; (194)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37184248

RESUMEN

Copper is an essential trace element, functioning in catalysis and signaling in biological systems. Radiolabeled copper has been used for decades in studying basic human and animal copper metabolism and copper-related disorders, such as Wilson disease (WD) and Menke's disease. A recent addition to this toolkit is 64-copper (64Cu) positron emission tomography (PET), combining the accurate anatomical imaging of modern computed tomography (CT) or magnetic resonance imaging (MRI) scanners with the biodistribution of the 64Cu PET tracer signal. This allows the in vivo tracking of copper fluxes and kinetics, thereby directly visualizing human and animal copper organ traffic and metabolism. Consequently, 64Cu PET is well-suited for evaluating clinical and preclinical treatment effects and has already demonstrated the ability to diagnose WD accurately. Furthermore, 64Cu PET/CT studies have proven valuable in other scientific areas like cancer and stroke research. The present article shows how to perform 64Cu PET/CT or PET/MR in humans. Procedures for 64Cu handling, patient preparation, and scanner setup are demonstrated here.


Asunto(s)
Cobre , Degeneración Hepatolenticular , Animales , Humanos , Cobre/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Cobre , Degeneración Hepatolenticular/metabolismo
10.
EJNMMI Res ; 13(1): 31, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060394

RESUMEN

BACKGROUND: Routine prostate-specific membrane antigen (PSMA) positron emission tomography (PET) performed for primary staging or restaging of prostate cancer patients is usually done as a single static image acquisition 60 min after tracer administration. In this study, we employ dynamic whole-body (D-WB) PET imaging to compare the pharmacokinetics of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 in various tissues and lesions, and to assess whether Patlak parametric images are quantitative and improve lesion detection and image readability. METHODS: Twenty male patients with prostate cancer were examined using a D-WB PSMA PET protocol. Ten patients were scanned with [68Ga]Ga-PSMA-11 and ten with [18F]PSMA-1007. Kinetic analyses were made using time-activity curves (TACs) extracted from organs (liver, spleen, bone, and muscle) and lesions. For each patient, three images were produced: SUV + Patlak parametric images (Ki and DV). All images were reviewed visually to compare lesion detection, image readability was quantified using target-to-background ratios (TBR), and Ki and DV values were compared. RESULTS: The two PSMA tracers exhibited markedly different pharmacokinetics in organs: reversible for [68Ga]Ga-PSMA-11 and irreversible for [18F]PSMA-1007. For both tracers, lesions kinetics were best described by an irreversible model. All parametric images were of good visual quality using both radiotracers. In general, Ki images were characterized by reduced vascular signal and increased lesion TBR compared with SUV images. No additional malignant lesions were identified on the parametric images. CONCLUSION: D-WB PET/CT is feasible for both PSMA tracers allowing for direct reconstruction of parametric Ki images. The use of multiparametric PSMA images increased TBR but did not lead to the detection of more lesions. For quantitative whole-body Ki imaging, [18F]PSMA-1007 should be preferred over [68Ga]Ga-PSMA-11 due to its irreversible kinetics in organs and lesions.

11.
Neuroimage ; 269: 119908, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720436

RESUMEN

INTRODUCTION: [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS: [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS: Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION: Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.


Asunto(s)
Electrones , Tomografía de Emisión de Positrones , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/metabolismo , Colinérgicos , Piperidinas , Tomografía de Emisión de Positrones/métodos , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Radioisótopos de Flúor
12.
J Parkinsons Dis ; 12(8): 2493-2506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36336941

RESUMEN

BACKGROUND: Cholinergic degeneration is strongly associated with cognitive decline in patients with Parkinson's disease (PD) but may also cause motor symptoms and olfactory dysfunction. Regional differences are striking and may reflect different PD related symptoms and disease progression patterns. OBJECTIVE: To map and quantify the regional cerebral cholinergic alterations in non-demented PD patients. METHODS: We included 15 non-demented PD patients in early-moderate disease stage and 15 age- and sex-matched healthy controls for [18F]FEOBV positron emission tomography imaging. We quantitated regional variations using VOI-based analyses which were supported by a vertex-wise cluster analysis. Correlations between imaging data and clinical and neuropsychological data were explored. RESULTS: We found significantly decreased [18F]FEOBV uptake in global neocortex (38%, p = 0.0002). The most severe reductions were seen in occipital and posterior temporo-parietal regions (p < 0.0001). The vertex-wise cluster analysis corroborated these findings. All subcortical structures showed modest non-significant reductions. Motor symptoms (postural instability and gait difficulty) and cognition (executive function and composite z-score) correlated with regional [18F]FEOBV uptake (thalamus and cingulate cortex/insula/hippocampus, respectively), but the correlations were not statistically significant after multiple comparison correction. A strong correlation was found between interhemispheric [18F]FEOBV asymmetry, and motor symptom asymmetry of the extremities (r = 0.84, p = 0.0001). CONCLUSION: Cortical cholinergic degeneration is prominent in non-demented PD patients, but more subtle in subcortical structures. Regional differences suggest uneven involvement of cholinergic nuclei in the brain and may represent a window to follow disease progression. The correlation between asymmetric motor symptoms and neocortical [18F]FEOBV asymmetry indicates that unilateral cholinergic degeneration parallels ipsilateral dopaminergic degeneration.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Estudios de Casos y Controles , Tomografía de Emisión de Positrones , Colinérgicos , Progresión de la Enfermedad
13.
Parkinsonism Relat Disord ; 104: 21-25, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198248

RESUMEN

INTRODUCTION: The peripheral autonomic nervous system may be involved years before onset of motor symptoms in some patients with Parkinson's disease (PD). Specific imaging techniques to quantify the cholinergic nervous system in peripheral organs are an unmet need. We tested the hypothesis that patients with PD display decreased [18F]FEOBV uptake in peripheral organs - a sign of parasympathetic denervation. METHODS: We included 15 PD patients and 15 age- and sex matched healthy controls for a 70 min whole-body dynamic positron emission tomography (PET) acquisition. Compartmental modelling was used for tracer kinetic analyses of adrenal gland, pancreas, myocardium, spleen, renal cortex, muscle and colon. Standard uptake values (SUV) at 60-70 min post injection were also extracted for these organs. Additionally, SUVs were also determined in the total colon, prostate, parotid and submandibular glands. RESULTS: We found no statistically significant difference of [18F]FEOBV binding parameters in any organs between patients with PD and healthy controls, although trends were observed. The pancreas SUV showed a 14% reduction in patients (P = 0.021, not statistically significant after multiple comparison correction). We observed a trend towards lower SUVs in the pancreas, colon, adrenal gland, and myocardium of PD patients with versus without probable REM sleep behavior disorder. CONCLUSION: [18F]FEOBV PET may not be a sensitive marker for parasympathetic degeneration in patients with PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Masculino , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Piperidinas , Tomografía de Emisión de Positrones/métodos , Parasimpatectomía
14.
Nucl Med Biol ; 114-115: 49-57, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36095922

RESUMEN

INTRODUCTION: Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for bile acids to function as detergents and signal carriers. Perturbation of the EHC by disease or drugs may lead to serious and life-threatening liver and gastrointestinal disorders. In this proof-of-concept study in pigs, we investigate the potential of N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly) as tracer for quantitative positron emission tomography (PET) of the EHC of conjugated bile acids. METHODS: The biodistribution of [18F]FBCGly was investigated by PET/CT in domestic pigs following intravenous and intraileal administration of the tracer. Hepatic kinetics were estimated from PET and blood data using a 2-tissue compartmental model and dual-input of [18F]FBCGly. The ileal uptake of [18F]FBCGly was investigated with co-injection of nifedipine and endogenous cholyltaurine. Dosimetry was estimated from the PET data using the Olinda 2.0 software. Blood, bile and urine samples were analyzed for possible fluorine-18 labelled metabolites of [18F]FBCGly. RESULTS: [18F]FBCGly was rapidly taken up by the liver and excreted into bile, and underwent EHC without being metabolized. Both nifedipine and endogenous cholyltaurine inhibited the ileal uptake of [18F]FBCGly. The flow-dependent hepatic uptake clearance was estimated to median 1.2 mL blood/min/mL liver tissue. The mean residence time of [18F]FBCGly in hepatocytes was 4.0 ± 1.1 min. Critical organs for [18F]FBCGly were the gallbladder wall (0.94 mGy/MBq) and the small intestine (0.50 mGy/MBq). The effective dose for [18F]FBCGly was 36 µSv/MBq. CONCLUSION: We have shown that [18F]FBCGly undergoes EHC in pigs without being metabolized and that its ileal uptake is inhibited by nifedipine and endogenous bile acids. Combined with our previous findings in rats, we believe that [18F]FBCGly has potential as PET tracer for assessment of EHC of conjugated bile acids under physiological conditions as well as conditions with perturbed hepatic and ileal bile acid transport.


Asunto(s)
Ácido Glicocólico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Porcinos , Ratas , Distribución Tisular , Nifedipino , Tomografía de Emisión de Positrones/métodos , Circulación Enterohepática , Ácidos y Sales Biliares , Radiometría , Ácido Taurocólico
15.
EJNMMI Phys ; 9(1): 60, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076097

RESUMEN

PURPOSE: Contemporary PET/CT scanners can use 70-min dynamic whole-body (D-WB) PET to generate more quantitative information about FDG uptake than just the SUV by generating parametric images of FDG metabolic rate (MRFDG). The analysis requires the late (50-70 min) D-WB tissue data combined with the full (0-70 min) arterial input function (AIF). Our aim was to assess whether the use of a scaled population-based input function (sPBIF) obviates the need for the early D-WB PET acquisition and allows for a clinically feasible 20-min D-WB PET examination. METHODS: A PBIF was calculated based on AIFs from 20 patients that were D-WB PET scanned for 120 min with simultaneous arterial blood sampling. MRFDG imaging using PBIF requires that the area under the curve (AUC) of the sPBIF is equal to the AUC of the individual patient's input function because sPBIF AUC bias translates into MRFDG bias. Special patient characteristics could affect the shape of their AIF. Thus, we validated the use of PBIF in 171 patients that were divided into 12 subgroups according to the following characteristics: diabetes, cardiac ejection fraction, blood pressure, weight, eGFR and age. For each patient, the PBIF was scaled to the aorta image-derived input function (IDIF) to calculate a sPBIF, and the AUC bias was calculated. RESULTS: We found excellent agreement between the AIF and IDIF at all times. For the clinical validation, the use of sPBIF led to an acceptable AUC bias of 1-5% in most subgroups except for patients with diabetes or patients with low eGFR, where the biases were marginally higher at 7%. Multiparametric MRFDG images based on a short 20-min D-WB PET and sPBIF were visually indistinguishable from images produced by the full 70-min D-WB PET and individual IDIF. CONCLUSIONS: A short 20-min D-WB PET examination using PBIF can be used for multiparametric imaging without compromising the image quality or precision of MRFDG. The D-WB PET examination may therefore be used in clinical routine for a wide range of patients, potentially allowing for more precise quantification in e.g. treatment response imaging.

16.
EJNMMI Res ; 12(1): 17, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362761

RESUMEN

BACKGROUND: The autonomic nervous system is frequently affected in some neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies. In vivo imaging methods to visualize and quantify the peripheral cholinergic nervous system are lacking. By using [18F]FEOBV PET, we here describe the peripheral distribution of the specific cholinergic marker, vesicular acetylcholine transporters (VAChT), in human subjects. We included 15 healthy subjects aged 53-86 years for 70 min dynamic PET protocol of peripheral organs. We performed kinetic modelling of the adrenal gland, pancreas, myocardium, renal cortex, spleen, colon, and muscle using an image-derived input function from the aorta. A metabolite correction model was generated from venous blood samples. Three non-linear compartment models were tested. Additional time-activity curves from 6 to 70 min post injection were generated for prostate, thyroid, submandibular-, parotid-, and lacrimal glands. RESULTS: A one-tissue compartment model generated the most robust fits to the data. Total volume-of-distribution rank order was: adrenal gland > pancreas > myocardium > spleen > renal cortex > muscle > colon. We found significant linear correlations between total volumes-of-distribution and standard uptake values in most organs. CONCLUSION: High [18F]FEOBV PET signal was found in structures with known cholinergic activity. We conclude that [18F]FEOBV PET is a valid tool for estimating VAChT density in human peripheral organs. Simple static images may replace kinetic modeling in some organs and significantly shorten scan duration. Clinical Trial Registration Trial registration: NCT, NCT03554551. Registered 31 May 2018. https://clinicaltrials.gov/ct2/show/NCT03554551?term=NCT03554551&draw=2&rank=1 .

17.
EJNMMI Res ; 12(1): 16, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347465

RESUMEN

BACKGROUND: This study examines the clinical feasibility and impact of implementing a fully automated whole-body PET protocol with data-driven respiratory gating in patients with a broad range of oncological and non-oncological pathologies 592 FDG PET/CT patients were prospectively included. 200 patients with lesions in the torso were selected for further analysis, and ungated (UG), belt gated (BG) and data-driven gating (DDG) images were reconstructed. All images were reconstructed using the same data and without prolonged acquisition time for gated images. Images were quantitatively analysed for lesion uptake and metabolic volume, complemented by a qualitative analysis of visual lesion detection. In addition, the impact of gating on treatment response evaluation was evaluated in 23 patients with malignant lymphoma. RESULTS: Placement of the belt needed for BG was associated with problems in 27% of the BG scans, whereas no issues were reported using DDG imaging. For lesion quantification, DDG and BG images had significantly greater SUV values and smaller volumes than UG. The physicians reported notable image blurring in 44% of the UG images that was problematic for clinical evaluation in 4.5% of cases. CONCLUSION: Respiratory motion compensation using DDG is readily integrated into clinical routine and produce images with more accurate and significantly greater SUV values and smaller metabolic volumes. In our broad cohort of patients, the physicians overwhelmingly preferred gated over ungated images, with a slight preference for DDG images. However, even in patients with malignant disease in the torso, no additional diagnostic information was obtained by the gated images that could not be derived from the ungated images.

18.
EJNMMI Res ; 12(1): 15, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35254514

RESUMEN

BACKGROUND: Dynamic whole-body (D-WB) FDG PET/CT is a recently developed technique that allows direct reconstruction of multiparametric images of metabolic rate of FDG uptake (MRFDG) and "free" FDG (DVFDG). Multiparametric images have a markedly different appearance than the conventional SUV images obtained by static PET imaging, and normal values of MRFDG and DVFDG in frequently used reference tissues and organs are lacking. The aim of this study was therefore to: (1) provide an overview of normal MRFDG and DVFDG values and range of variation in organs and tissues; (2) analyse organ time-activity curves (TACs); (3) validate the accuracy of directly reconstructed MRFDG tissue values versus manually calculated Ki (and MRFDG) values; and (4) explore correlations between demographics, blood glucose levels and MRFDG values. D-WB data from 126 prospectively recruited patients (100 without diabetes and 26 with diabetes) were retrospectively analysed. Participants were scanned using a 70-min multiparametric PET acquisition protocol on a Siemens Biograph Vision 600 PET/CT scanner. 13 regions (bone, brain grey and white matter, colon, heart, kidney, liver, lung, skeletal muscle of the back and thigh, pancreas, spleen, and stomach) as well as representative pathological findings were manually delineated, and values of static PET (SUV), D-WB PET (Ki, MRFDG and DVFDG) and individual TACs were extracted. Multiparametric values were compared with manual TAC-based calculations of Ki and MRFDG, and correlations with blood glucose, age, weight, BMI, and injected tracer dose were explored. RESULTS: Tissue and organ MRFDG values showed little variation, comparable to corresponding SUV variation. All regional TACs were in line with previously published FDG kinetics, and the multiparametric metrics correlated well with manual TAC-based calculations (r2 = 0.97, p < 0.0001). No correlations were observed between glucose levels and MRFDG in tissues known not to be substrate driven, while tissues with substrate driven glucose uptake had significantly correlated glucose levels and MRFDG values. CONCLUSION: The multiparametric D-WB PET scan protocol provides normal MRFDG values with little inter-subject variation and in agreement with manual TAC-based calculations and literature values. The technique therefore facilitates both accurate clinical reports and simpler acquisition of quantitative estimates of whole-body tissue glucose metabolism.

19.
Lab Anim ; 56(3): 287-291, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34596450

RESUMEN

In preclinical positron emission tomography animal studies, continuous blood sampling is used to measure the time course of the activity concentration in arterial blood. However, pigs have hypercoagulable blood that tends to clot inside plastic tubes. We tested several tube materials and lengths and the use of three-way connectors. We validated set-ups for automated blood sampling with and without blood recirculation that could run for 90 minutes without problematic clots and without any evidence of emboli formation during necropsy.


Asunto(s)
Tomografía de Emisión de Positrones , Sus scrofa , Animales , Recolección de Muestras de Sangre , Tomografía de Emisión de Positrones/métodos , Porcinos
20.
Hepatology ; 75(6): 1461-1470, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34773664

RESUMEN

BACKGROUND AND AIMS: Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS: Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS: 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.


Asunto(s)
Degeneración Hepatolenticular , Degeneración Hepatolenticular/diagnóstico por imagen , Degeneración Hepatolenticular/genética , Heterocigoto , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...