Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 61(7): 3166-3171, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34251801

RESUMEN

Molecular dynamics (MD) simulations have become a standard tool to correlate the structure and function of biomolecules and significant advances have been made in the study of proteins and their complexes. A major drawback of conventional MD simulations is the difficulty and cost of obtaining converged results, especially when exploring potential energy surfaces containing considerable energy barriers. This limits the wide use of MD calculations to determine the thermodynamic properties of biomolecular processes. Indeed, this is true when considering the conformational entropy of such processes, which is ultimately critical in assessing the simulations' convergence. Alternatively, a wide range of structure-based models (SBMs) has been used in the literature to unravel the basic mechanisms of biomolecular dynamics. These models introduce simplifications that focus on the relevant aspects of the physical process under study. Because of this, SBMs incorporate the need to modify the force field definition and parameters to target specific biophysical simulations. Here we introduce SBMOpenMM, a Python library to build force fields for SBMs, that uses the OpenMM framework to create and run SBM simulations. The code is flexible and user-friendly and profits from the high customizability and performance provided by the OpenMM platform.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Conformación Molecular , Termodinámica
2.
Eur J Cell Biol ; 96(6): 579-590, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647132

RESUMEN

S-adenosylhomocysteine hydrolase (AHCY) is thought to be located at the sites of ongoing AdoMet-dependent methylation, presumably in the cell nucleus. Endogenous AHCY is located both in cytoplasm and the nucleus. Little is known regarding mechanisms that drive its subcellular distribution, and even less is known on how mutations causing AHCY deficiency affect its intracellular dynamics. Using fluorescence microscopy and GFP-tagged AHCY constructs we show significant differences in the intensity ratio between nuclei and cytoplasm for mutant proteins when compared with wild type AHCY. Interestingly, nuclear export of AHCY is not affected by leptomycin B. Systematic deletions showed that AHCY has two regions, located at both sides of the protein, that contribute to its nuclear localization, implying the interaction with various proteins. In order to evaluate protein interactions in vivo we engaged in bimolecular fluorescence complementation (BiFC) based studies. We investigated previously assumed interaction with AHCY-like-1 protein (AHCYL1), a paralog of AHCY. Indeed, significant interaction between both proteins exists. Additionally, silencing AHCYL1 leads to moderate inhibition of nuclear export of endogenous AHCY.


Asunto(s)
Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Mapas de Interacción de Proteínas/genética , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Ácidos Grasos Insaturados/farmacología , Eliminación de Gen , Humanos , Microscopía Fluorescente , Mutación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...