Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(2): e4220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037285

RESUMEN

Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community-weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community-weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community-weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community-weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community-weighted trait means as well as their functional diversity across grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Sequías , Plantas , América del Norte , Asia Oriental , Nitrógeno
2.
Environ Monit Assess ; 195(5): 621, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106260

RESUMEN

The African continent has the most extensive grassland cover in the world, providing valuable ecosystem services. African grasslands, like other continental grasslands, are prone to various anthropogenic disturbances and climate, and require data-driven monitoring for efficient functioning and service delivery. Yet, knowledge of how the African grassland cover has changed in the past years is lacking, especially at the subcontinent level, due to lack of relevant long-term, Africa-wide observations and experiments. In this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) data spanning 2001 to 2017 to conduct land use land cover (LULC) change analyses and map grassland distribution in Africa. Specifically, we assessed the changes in grassland cover across and within African subcontinents over three periods (2001-2013, 2013-2017, and 2001-2017). We found that the African grassland cover was 16,777,765.5 km2, 16,999,468.25 km2, and 16,968,304.25 km2 in 2001, 2013, and 2017, respectively. There were net gain (1.32%) and net loss (- 0.19%) during 2001-2013 and 2013-2017 periods, respectively, and the annual rate of change during these periods were 0.11% and - 0.05%, respectively. Generally, the African grassland cover increased by 1.14% (0.07% per annum) over the entire study period (2001-2017) at the expense of forestland, cropland, and built-up areas. The East and West African grassland cover reduced by 0.07% (- 0.02% per annum) and 1.35% (- 0.34% per annum), respectively from 2013 to 2017 but increased in other periods. On the other hand, the grassland cover in North and Central Africa increased throughout the three periods while that of Southern Africa decreased over the three periods. Overall, the net gains in the grassland cover of other African subcontinents offset the loss in Southern Africa and promoted the overall gain across Africa. This study underscores the need for continuous monitoring of African grasslands and the causes of their changes for efficient delivery of ecosystem services.


Asunto(s)
Ecosistema , Pradera , Conservación de los Recursos Naturales , Monitoreo del Ambiente , África Austral
3.
Ecology ; 104(2): e3920, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416074

RESUMEN

Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6-year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2-year drought (2015-2016), followed by a recovery period (2017-2018) and, finally, a second 2-year drought (2019-2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community-weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.


Asunto(s)
Ecosistema , Pradera , Sequías , Suelo , Poaceae
4.
Oecologia ; 198(3): 763-771, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35230515

RESUMEN

Belowground bud banks play a crucial role in plant population regeneration, community dynamics, and functional responses of ecosystems to environmental change and disturbance. In mesic grasslands, belowground bud banks are largely resistant to short-term drought. However, the sensitivity of belowground bud banks to long-term extreme drought in semi-arid grasslands is less understood. We investigated the legacy effects of a four-year experimental drought (i.e., 66% reduction in growing season precipitation) on belowground bud density, aboveground shoot density, and the meristem limitation index (MLI; the ratio of bud to shoot density) in two semi-arid grasslands that differ in dominant grass species growth forms (i.e., rhizomatous vs. bunchgrasses). Measurements were made during the first recovery year following drought; thus, we report the legacy effects of drought on belowground bud banks. At the community level, drought reduced belowground bud density and aboveground shoot density with no change in MLI. However, drought had no significant influences on belowground buds, aboveground shoots and MLI of the dominant plant growth form in each community. The legacy effects of drought were largely dependent on plant community type and growth form. Specifically, bunchgrasses and bunchgrass-dominated communities were characterized by greater meristem limitation than rhizomatous grasses, likely due to their cluster/phalanx clonal growth. Overall, our study suggests bud banks may indeed be sensitive to long-term drought, although this depends on plant growth forms and community characteristics.


Asunto(s)
Sequías , Pradera , Ecosistema , Plantas , Poaceae/fisiología
5.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957674

RESUMEN

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Eutrofización , Nitrógeno , Nutrientes
6.
Sci Rep ; 10(1): 16884, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037306

RESUMEN

Microorganisms have important ecological functions in ecosystems. Reseeding is considered as one of the main strategies for preventing grassland degradation in China. However, the response of soil microbial community and diversity to reseeding grassland (RG) and natural grassland (NG) remains unclear, especially in the Songnen Meadow. In this study, the soil microbial community compositions of two vegetation restoration types (RG vs NG) were analyzed using a high-throughput sequencing technique. A total of 23,142 microbial OTUs were detected, phylogenetically derived from 11 known bacterial phyla. Soil advantage categories included Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, which together accounted for > 78% of the all phyla in vegetation restoration. The soil microbial diversity was higher in RG than in NG. Two types of vegetation restoration had significantly different characteristics of soil microbial community (P < 0.001). Based on a molecular ecological network analysis, we found that the network in RG had a longer average path distance and modularity than in NG network, making it more resilient to environment changes. Meanwhile, the results of the canonical correspondence analysis and molecular ecological network analysis showed that soil pH (6.34 ± 0.35 in RG and 7.26 ± 0.28 in NG) was the main factor affecting soil microbial community structure, followed by soil moisture (SM) in the Songnen meadow, China. Besides, soil microbial community characteristics can vary significantly in different vegetation restoration. Thus, we suggested that it was necessary and reasonable for this area to popularize reseeding grassland in the future.


Asunto(s)
Ecosistema , Pradera , Microbiota , Plantones , Semillas , Microbiología del Suelo , Acidobacteria , Actinobacteria , Bacteroidetes , China , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Filogenia , Proteobacteria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA