Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zoological Lett ; 9(1): 23, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049907

RESUMEN

The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The trigeminal nerve has three major branches in both the lamprey and jawed vertebrates. Although each of these branches was classically thought to be homologous between these two taxa, this homology is now in doubt. In the present study, we compared expression patterns of Hmx, a candidate genetic marker of the mandibular nerve (rV3, the third branch of the trigeminal nerve in jawed vertebrates), and the distribution of neuronal somata of trigeminal nerve branches in the trigeminal ganglion in lamprey and shark. We first confirmed the conserved expression pattern of Hmx1 in the shark rV3 neuronal somata, which are distributed in the caudal part of the trigeminal ganglion. By contrast, lamprey Hmx genes showed peculiar expression patterns, with expression in the ventrocaudal part of the trigeminal ganglion similar to Hmx1 expression in jawed vertebrates, which labeled the neuronal somata of the second branch. Based on these results, we propose two alternative hypotheses regarding the homology of the trigeminal nerve branches, providing new insights into the evolutionary origin of the vertebrate jaw.

2.
Brain Behav Evol ; 96(4-6): 305-317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34537767

RESUMEN

The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.


Asunto(s)
Evolución Biológica , Anguila Babosa , Animales , Anguila Babosa/anatomía & histología , Humanos , Lampreas/anatomía & histología , Filogenia , Telencéfalo , Vertebrados/anatomía & histología
3.
Front Cell Dev Biol ; 9: 700860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485287

RESUMEN

The vertebrate cerebellum arises at the dorsal part of rhombomere 1, induced by signals from the isthmic organizer. Two major cerebellar neuronal subtypes, granule cells (excitatory) and Purkinje cells (inhibitory), are generated from the anterior rhombic lip and the ventricular zone, respectively. This regionalization and the way it develops are shared in all extant jawed vertebrates (gnathostomes). However, very little is known about early evolution of the cerebellum. The lamprey, an extant jawless vertebrate lineage or cyclostome, possesses an undifferentiated, plate-like cerebellum, whereas the hagfish, another cyclostome lineage, is thought to lack a cerebellum proper. In this study, we found that hagfish Atoh1 and Wnt1 genes are co-expressed in the rhombic lip, and Ptf1a is expressed ventrally to them, confirming the existence of r1's rhombic lip and the ventricular zone in cyclostomes. In later stages, lamprey Atoh1 is downregulated in the posterior r1, in which the NeuroD increases, similar to the differentiation process of cerebellar granule cells in gnathostomes. Also, a continuous Atoh1-positive domain in the rostral r1 is reminiscent of the primordium of valvula cerebelli of ray-finned fishes. Lastly, we detected a GAD-positive domain adjacent to the Ptf1a-positive ventricular zone in lampreys, suggesting that the Ptf1a-positive cells differentiate into some GABAergic inhibitory neurons such as Purkinje and other inhibitory neurons like in gnathostomes. Altogether, we conclude that the ancestral genetic programs for the formation of a distinct cerebellum were established in the last common ancestor of vertebrates.

4.
Zoological Lett ; 5: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31223485

RESUMEN

BACKGROUND: Catfish (Siluriformes) are characterized by unique morphologies, including enlarged jaws with movable barbels and taste buds covering the entire body surface. Evolution of these characteristics was a crucial step in their adaptive radiation to freshwater environments. However, the developmental processes of the catfish craniofacial region and taste buds remain to be elucidated; moreover, little is known about the molecular mechanisms underlying the morphogenesis of these structures. RESULTS: In Amur catfish (Silurus asotus), three pairs of barbel primordia are formed by 2 days post-fertilization (dpf). Innervation of the peripheral nerves and formation of muscle precursors are also established during early development. Taste buds from the oral region to the body trunk are formed by 4 dpf. We then isolated catfish cognates Shh (SaShh) and Fgf8 (SaFgf8), which are expressed in maxillary barbel primordium at 1-2 dpf. Further, SHH signal inhibition induces reduction of mandibular barbels with abnormal morphology of skeletal elements, whereas it causes no apparent abnormality in the trigeminal and facial nerve morphology. We also found that mandibular barbel lengths and number of taste buds are reduced by FGF inhibition, as seen in SHH signal inhibition. However, unlike with SHH inhibition, the abnormal morphology of the trigeminal and facial nerves was observed in FGF signal-inhibited embryos. CONCLUSION: The developmental processes of Amur catfish are consistent with those reported for other catfish species. Thus, developmental aspects of craniofacial structures and taste buds may be conserved in Siluriformes. Our findings also suggest that SHH signaling plays a crucial role in the formation of barbels and taste buds, without affecting nerve projection, while FGF signaling is required for the development of barbels, taste buds, and branchial nerves. Thus, SHH and FGF signaling plays key roles in the ontogenesis and evolution of some catfish-specific characteristics.

5.
J Comp Neurol ; 527(4): 874-900, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30516281

RESUMEN

Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.


Asunto(s)
Atlas como Asunto , Peces/anatomía & histología , Telencéfalo/citología , Animales , Biomarcadores/análisis , Transcriptoma
6.
Arthropod Struct Dev ; 47(1): 64-73, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109050

RESUMEN

The egg structure and outline of the embryonic development of Metallyticus splendidus of one of the basal Mantodea representatives, Metallyticidae, were described in the present study. The results obtained were compared with those from the previous studies, to reconstruct and discuss the groundplan of Mantodea and Dictyoptera. In M. splendidus, the egg is spheroidal, it has a convex ventral side at the center in which numerous micropyles are grouped, and it possesses a conspicuous hatching line in its anterior half. These are the groundplan features of mantodean eggs and the "grouped micropyles in the ventral side of the egg" are regarded as an apomorphic groundplan feature of Dictyoptera. A small circular embryo is formed by a simple concentration of blastoderm cells, which then undergoes embryogenesis of the typical short germ band type. Blastokinesis is of the "non-reversion type" and the embryo keeps its original superficial position and original orientation throughout embryonic development. During the middle stages of development, the embryo undergoes rotation around the egg's anteroposterior axis. These features are a part of the groundplan of Mantodea. It is uncertain whether sharing of the "non-reversion type" of blastokinesis by Mantodea and blaberoidean Blattodea can be regarded as homology or homoplasy.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario , Mantódeos/embriología , Mantódeos/ultraestructura , Animales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Óvulo/ultraestructura
8.
Dev Growth Differ ; 59(4): 270-285, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28555754

RESUMEN

Paired limbs were acquired in the ancestor of tetrapods and their morphology has been highly diversified in amniotes in relation to the adaptive radiation to the terrestrial environment. These morphological changes may have been induced by modification of the developmental program of the skeletal or muscular system. To complete limb modification, it is also important to change the neuronal framework, because the functions of the limbs rely on neural circuits that involve coordinated movement. Previous studies have shown that class 3 semaphorins (Sema3 semaphorins), which act as repulsive axonal guidance cues, play a crucial role in the formation of the peripheral nerves in mice. Here, we studied the expression pattern of Sema3A orthologues in embryos of developing amniotes, including mouse, chick, soft-shelled turtle, and ocelot gecko. Sema3A transcripts were expressed in restricted mesenchymal parts of the developing limb primordium in all animals studied, and developing spinal nerves appeared to extend through Sema3A-negative regions. These results suggest that a Sema3A-dependent guidance system plays a key role in neuronal circuit formation in amniote limbs. We also found that Sema3A partially overlapped with the distribution of cartilage precursor cells. Based on these results, we propose a model in which axon guidance and skeletogenesis are linked by Sema3A; such mechanisms may underlie functional neuron rearrangement during limb diversification.


Asunto(s)
Extremidades/embriología , Extremidades/inervación , Regulación del Desarrollo de la Expresión Génica , Semaforina-3A/genética , Animales , Embrión de Pollo , Lagartos , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Semaforina-3A/metabolismo , Tortugas
9.
Dev Growth Differ ; 59(4): 228-243, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28470724

RESUMEN

The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution.


Asunto(s)
Peces/embriología , Peces/metabolismo , Mamíferos/embriología , Mamíferos/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Evolución Biológica , Cerebelo/embriología , Cerebelo/metabolismo , Neuronas/citología , Neuronas/metabolismo
10.
Dev Growth Differ ; 59(4): 163-174, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28447337

RESUMEN

Highly complicated morphologies and sophisticated functions of vertebrate brains have been established through evolution. However, the origin and early evolutionary history of the brain remain elusive, owing to lack of information regarding the brain architecture of extant and fossil species of jawless vertebrates (agnathans). Comparative analyses of the brain of less studied cyclostomes (only extant agnathan group, consisting of lampreys and hagfish) with the well-known sister group of jawed vertebrates (gnathostomes) are the only tools we have available to illustrate the ancestral architecture of the vertebrate brain. Previous developmental studies had shown that the lamprey lacked well-established brain compartments that are present in gnathostomes, such as the medial ganglionic eminence and the rhombic lip. The most accepted scenario suggested that cyclostomes had fewer compartments than that of the gnathostome brain and that gnathostomes thus evolved by a stepwise addition of innovations on its developmental sequence. However, recent studies have revealed that these compartments are present in hagfish embryos, indicating that these brain regions have been acquired before the split of cyclostomes and gnathostomes. By comparing two cyclostome lineages and gnathostomes, it has become possible to speculate about a more complex ancestral state of the brain, excluding derived traits in either of the lineages. In this review, we summarize recent studies on the brain development of the lamprey and hagfish. Then, we attempt to reconstruct the possible brain architecture of the last common ancestor of vertebrates. Finally, we discuss how the developmental plan of the vertebrate brain has been modified independently in different vertebrate lineages.


Asunto(s)
Anguila Babosa/embriología , Lampreas/embriología , Animales , Evolución Biológica , Cerebelo/embriología , Filogenia , Telencéfalo/embriología
11.
Mar Pollut Bull ; 124(2): 792-797, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28259418

RESUMEN

Pyrene, a member of the polycyclic aromatic hydrocarbons (PAHs), contributes to abnormality in the size of the brain and the swimming behavior of pufferfish (Takifugu niphobles) larvae. We hypothesized that the aryl hydrocarbon receptor (AHR) may mediate pyrene-induced toxic effects because AHR is assumed to be a candidate for the downstream target of PAHs in many cases. To identify the contribution of AHR on developing pufferfish, we performed exposure experiments using ß-naphthoflavone, an agonist of AHR. We found that the toxic effects of pyrene and ß-naphthoflavone in pufferfish larvae are fundamentally different. Pyrene specifically induced problems in the developing midbrain and in swimming behavior, while ß-naphthoflavone affected the heartbeat rate and the size of the yolk. These results suggest that the behavioral and morphological abnormality caused by pyrene exposure is mediated by an AHR-independent pathway. Alternatively, defects caused by pyrene may be attributed to the inhibition of the FGF signal.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Pirenos/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Takifugu , beta-naftoflavona/toxicidad , Animales , Frecuencia Cardíaca/efectos de los fármacos , Sistema Nervioso , Contaminación por Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pirroles , Natación , beta-naftoflavona/química
12.
Nature ; 531(7592): 97-100, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26878236

RESUMEN

The vertebrate brain is highly complex, but its evolutionary origin remains elusive. Because of the absence of certain developmental domains generally marked by the expression of regulatory genes, the embryonic brain of the lamprey, a jawless vertebrate, had been regarded as representing a less complex, ancestral state of the vertebrate brain. Specifically, the absence of a Hedgehog- and Nkx2.1-positive domain in the lamprey subpallium was thought to be similar to mouse mutants in which the suppression of Nkx2-1 leads to a loss of the medial ganglionic eminence. Here we show that the brain of the inshore hagfish (Eptatretus burgeri), another cyclostome group, develops domains equivalent to the medial ganglionic eminence and rhombic lip, resembling the gnathostome brain. Moreover, further investigation of lamprey larvae revealed that these domains are also present, ruling out the possibility of convergent evolution between hagfish and gnathostomes. Thus, brain regionalization as seen in crown gnathostomes is not an evolutionary innovation of this group, but dates back to the latest vertebrate ancestor before the divergence of cyclostomes and gnathostomes more than 500 million years ago.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Anguila Babosa/anatomía & histología , Anguila Babosa/embriología , Lampreas/anatomía & histología , Lampreas/embriología , Filogenia , Animales , Femenino , Anguila Babosa/genética , Humanos , Lampreas/genética , Lampreas/crecimiento & desarrollo , Larva/anatomía & histología , Masculino , Ratones , Datos de Secuencia Molecular , Sintenía/genética
13.
Development ; 143(1): 66-74, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26732839

RESUMEN

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Asunto(s)
Ganglios Basales/citología , Ganglios Basales/embriología , Neocórtex/embriología , Células-Madre Neurales/citología , Neuronas/citología , Ambystoma mexicanum , Animales , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Monodelphis/embriología , Neocórtex/citología , Tortugas/embriología , Xenopus laevis
14.
Zoological Lett ; 1: 28, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26605073

RESUMEN

INTRODUCTION: During vertebrate development, the central nervous system (CNS) has stereotyped neuronal tracts (scaffolds) that include longitudinal and commissural axonal bundles, such as the medial longitudinal fascicle or the posterior commissure (PC). As these early tracts appear to guide later-developing neurons, they are thought to provide the basic framework of vertebrate neuronal circuitry. The proper construction of these neuronal circuits is thought to be a crucial step for eliciting coordinated behaviors, as these circuits transmit sensory information to the integrative center, which produces motor commands for the effective apparatus. However, the developmental plan underlying some commissures and the evolutionary transitions they have undergone remain to be elucidated. Little is known about the role of axon guidance molecules in the elicitation of early-hatched larval behavior as well. RESULTS: Here, we report the developmentally regulated expression pattern of axon-guidance molecules Slit2 ligand and Robo2 receptor in Xenopus laevis and show that treatment of X. laevis larvae with a slit2- or robo2-morpholino resulted in abnormal swimming behavior. We also observed an abnormal morphology of the PC, which is part of the early axonal scaffold. CONCLUSION: Our present findings suggest that expression patterns of Slit2 and Robo2 are conserved in tetrapods, and that their signaling contributes to the construction of the PC in Xenopus. Given that the PC also includes several types of neurons stemming from various parts of the CNS, it may represent a candidate prerequisite neuronal tract in the construction of subsequent complex neuronal circuits that trigger coordinated behavior.

15.
Evol Dev ; 17(2): 139-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801221

RESUMEN

Image-forming vision is crucial to animals for recognizing objects in their environment. In vertebrates, this type of vision is achieved with paired camera eyes and topographic projection of the optic nerve. Topographic projection is established by an orthogonal gradient of axon guidance molecules, such as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong to the basal lineage of vertebrates, are key animals because they show unique "dual visual development." In the embryonic and pre-ammocoete larval stage (the "primary" phase), photoreceptive "ocellus-like" eyes develop, but there is no retinotectal optic nerve projection. In the late ammocoete larval stage (the "secondary" phase), the eyes grow and form into camera eyes, and retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult lampreys is topographic, similar to that of gnathostomes. In this study, we explored the involvement of Ephs in lamprey "dual visual development" and establishment of the image-form vision. We found that gnathostome-like orthogonal gradient expression was present in the retina during the "secondary" phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression was observed during the "primary" phase. These observations suggest that Ephs are likely recruited de novo for the guidance of topographical "second" optic nerve projection. Transformations during lamprey "dual visual development" may represent "recapitulation" from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor.


Asunto(s)
Evolución Biológica , Lampreas/embriología , Lampreas/genética , Visión Ocular , Animales , Ojo/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Lampreas/metabolismo , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Vertebrados/embriología , Vertebrados/genética , Vertebrados/metabolismo
16.
J Comp Neurol ; 523(2): 251-61, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25233869

RESUMEN

Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions.


Asunto(s)
Evolución Biológica , Lampreas/anatomía & histología , Anfioxos/anatomía & histología , Animales , Tipificación del Cuerpo , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Homeodominio/metabolismo , Immunoblotting , Hibridación in Situ , Lampreas/crecimiento & desarrollo , Lampreas/metabolismo , Anfioxos/crecimiento & desarrollo , Anfioxos/metabolismo , Nervio Óptico/anatomía & histología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Retina/anatomía & histología , Retina/crecimiento & desarrollo , Especificidad de la Especie , Vías Visuales/anatomía & histología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo
17.
Dev Growth Differ ; 57(1): 40-57, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25494924

RESUMEN

With the exception of that from the olfactory system, the vertebrate sensory information is relayed by the dorsal thalamus (dTh) to be carried to the telencephalon via the thalamo-telencephalic tract. Although the trajectory of the tract from the dTh to the basal telencephalon seems to be highly conserved among amniotes, the axonal terminals vary in each group. In mammals, thalamic axons project onto the neocortex, whereas they project onto the dorsal pallium and the dorsal ventricular ridge (DVR) in reptiles and birds. To ascertain the evolutionary development of the thalamo-telencephalic connection in amniotes, we focused on reptiles. Using the Chinese soft-shelled turtle (Pelodiscus sinensis), we studied the developmental course of the thalamic axons projecting onto the DVR. We found, during the developmental period when the thalamo-DVR connection forms, that transcripts of axon guidance molecules, including EphA4 and Slit2, were expressed in the diencephalon, similar to the mouse embryo. These results suggest that the basic mechanisms responsible for the formation of the thalamo-telencephalic tract are shared across amniote lineages. Conversely, there was a characteristic difference in the expression patterns of Slit2, Netrin1, and EphrinA5 in the telencephalon between synapsid (mammalian) and diapsid (reptilian and avian) lineages. This indicates that changes in the expression domains of axon guidance molecules may modify the thalamic axon projection and lead to the diversity of neuronal circuits in amniotes.


Asunto(s)
Neocórtex/embriología , Tálamo/embriología , Animales , Axones/metabolismo , China , Efrina-A5/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Neocórtex/citología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Receptor EphA4/metabolismo , Tálamo/citología , Proteínas Supresoras de Tumor/metabolismo , Tortugas
18.
Aquat Toxicol ; 154: 39-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24858342

RESUMEN

The toxicity of dioxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is mainly mediated by an aryl hydrocarbon receptor (AHR), which regulates the transcription of multiple target genes including cytochrome P450 1A (CYP1A). Our pervious study identified the presence of TCDD-induced defects of peripheral nerve projection in red seabream (Pagrus major) embryos. However, it remains unclear whether the TCDD-induced peripheral neurotoxicity is mediated by the AHR. To assess the contribution of the red seabream AHR (rsAHR) signaling pathway to the neuronal toxicity, red seabream embryos at 10h post-fertilization (hpf) were treated for 80 min with TCDD (0, 0.3, 5.3, and 37 nM in seawater) alone or in combination with CH223191 (500 nM in seawater), which is an AHR antagonist. A preliminary in vitro reporter gene assay confirmed that TCDD-induced transcriptional activity via rsAHR1 and rsAHR2 was suppressed by CH223191 treatment in a dose-dependent manner. CYP1A mRNA expression in embryos was determined by 2-step real time quantitative-polymerase chain reaction at 24 and 120 hpf and in situ hybridization at 48, 72, 96 and 120 hpf. The morphology of the peripheral nerve system (PNS) was also microscopically observed by fluorescent staining using an anti-acetylated tubulin antibody at 120 hpf. CYP1A mRNA expression was dose-dependently induced by TCDD at all of the examined developing stages. The suppression of TCDD-induced CYP1A expression by CH223191 treatment was observed in embryos at 24 and 48 hpf, while the effect of the rsAHR antagonist disappeared at 96 and 120 hpf. This phenomenon indicated the transient suppression of TCDD-induced rsAHR activation by CH223191 treatment. The immunostaining of peripheral nerves at 120 hpf demonstrated that the projections of the craniofacial nerve were altered in TCDD-treated embryos, and the frequency of TCDD-induced abnormal projections was not prevented by co-treatment with CH223191. These results indicate that the transient suppression of TCDD-induced rsAHR activation during the early developing stages of the red seabream does not influence the abnormal projection of peripheral nerves. In conclusion, transient rsAHR activation in the early stages of development is not involved in the neurotoxicity.


Asunto(s)
Sistema Nervioso Periférico/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/metabolismo , Dorada/embriología , Contaminantes Químicos del Agua/toxicidad , Animales , Compuestos Azo/farmacología , Citocromo P-450 CYP1A1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Pirazoles/farmacología , Dorada/genética , Dorada/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Mar Pollut Bull ; 85(2): 479-86, 2014 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24793779

RESUMEN

Spills of heavy oil (HO) have an adverse effect on marine life. We have demonstrated previously that exposure to HO by fertilized eggs of the pufferfish (Takifugu rubripes) induces neural disruption and behavioral abnormality in early-hatched larvae. Here, two kinds of polycyclic aromatic hydrocarbons, pyrene and phenanthrene, were selected to examine their toxic effects on larval behavior of another pufferfish species (T. niphobles). Larvae exposed to pyrene or phenanthrene exhibited no abnormalities in morphology. However, those exposed to pyrene but not phenanthrene swam in an uncoordinated manner, although their swimming distance and speed were normal. The optic tectum, a part of the midbrain, of pyrene-exposed larvae did not grow to full size. Thus, these findings are indicated that pyrene might be a contributor to the behavioral and neuro-developmental toxicity, although there is no indication that it is the only compound participating in the toxicity of the heavy oil mixture.


Asunto(s)
Conducta Animal/efectos de los fármacos , Fenantrenos/toxicidad , Pirenos/toxicidad , Natación , Tetraodontiformes/fisiología , Animales , Larva/efectos de los fármacos , Larva/fisiología , Mesencéfalo/anatomía & histología , Mesencéfalo/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos
20.
Neurosci Res ; 86: 25-36, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24671134

RESUMEN

There is huge divergence in the size and complexity of vertebrate brains. Notably, mammals and birds have bigger brains than other vertebrates, largely because these animal groups established larger dorsal telencephali. Fossil evidence suggests that this anatomical trait could have evolved independently. However, recent comparative developmental analyses demonstrate surprising commonalities in neuronal subtypes among species, although this interpretation is highly controversial. In this review, we introduce intriguing evidence regarding brain evolution collected from recent studies in paleontology and developmental biology, and we discuss possible evolutionary changes in the cortical developmental programs that led to the encephalization and structural complexity of amniote brains. New research concepts and approaches will shed light on the origin and evolutionary processes of amniote brains, particularly the mammalian cerebral cortex.


Asunto(s)
Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/fisiología , Neurogénesis , Vertebrados/anatomía & histología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...