Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0305704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917121

RESUMEN

Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.


Asunto(s)
Células Asesinas Naturales , Síndrome del Golfo Pérsico , Canales Catiónicos TRPM , Humanos , Canales Catiónicos TRPM/metabolismo , Síndrome del Golfo Pérsico/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Masculino , Persona de Mediana Edad , Adulto , Femenino , Estudios de Casos y Controles , Técnicas de Placa-Clamp
3.
Front Immunol ; 15: 1264702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765011

RESUMEN

Introduction: Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods: Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results: This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion: Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.


Asunto(s)
COVID-19 , Células Asesinas Naturales , Naltrexona , Canales Catiónicos TRPM , Humanos , Canales Catiónicos TRPM/metabolismo , COVID-19/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adulto , Masculino , Persona de Mediana Edad , Femenino , Naltrexona/farmacología , Naltrexona/uso terapéutico , SARS-CoV-2/fisiología , Síndrome de Fatiga Crónica/tratamiento farmacológico , Síndrome de Fatiga Crónica/inmunología , Técnicas de Placa-Clamp , Tratamiento Farmacológico de COVID-19
4.
J Biol Chem ; 300(6): 107302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642892

RESUMEN

Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.


Asunto(s)
Pollos , Canal Catiónico TRPA1 , Zinc , Zinc/metabolismo , Zinc/química , Humanos , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/química , Animales , Células HEK293 , Dominios Proteicos , Especificidad de la Especie
5.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430781

RESUMEN

Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 (hTRPA1) among the TRPs. Therefore, JT010 is a useful tool for analyzing TRPA1 functions in biological systems. Here, we show that JT010 is a potent activator of hTRPA1, but not mouse TRPA1 (mTRPA1) in human embryonic kidney (HEK) cells expressing hTRPA1 and mTRPA1. Application of 0.3-100 nM of JT010 to HEK cells with hTRPA1 induced large Ca2+ responses. However, in HEK cells with mTRPA1, the response was small. In contrast, both TRPA1s were effectively activated by allyl isothiocyanate (AITC) at 10-100 µM. Similar selective activation of hTRPA1 by JT010 was observed in electrophysiological experiments. Additionally, JT010 activated TRPA1 in human fibroblast-like synoviocytes with inflammation, but not TRPA1 in mouse dorsal root ganglion cells. As cysteine at 621 (C621) of hTRPA1, a critical cysteine for interaction with JT010, is conserved in mTRPA1, we applied JT010 to HEK cells with mutations in mTRPA1, where the different residue of mTRPA1 with tyrosine at 60 (Y60), with histidine at 1023 (H1023), and with asparagine at 1027 (N1027) were substituted with cysteine in hTRPA1. However, these mutants showed low sensitivity to JT010. In contrast, the mutation of hTRPA1 at position 669 from phenylalanine to methionine (F669M), comprising methionine at 670 in mTRPA1 (M670), significantly reduced the response to JT010. Moreover, the double mutant at S669 and M670 of mTRPA1 to S669E and M670F, respectively, induced slight but substantial sensitivity to 30 and 100 nM JT010. Taken together, our findings demonstrate that JT010 potently and selectively activates hTRPA1 but not mTRPA1.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/genética , Canales de Calcio/genética , Canal Catiónico TRPA1/genética , Cisteína , Calcio/metabolismo , Metionina
6.
Mol Med ; 28(1): 98, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986236

RESUMEN

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multisystemic condition associated with post-infectious onset, impaired natural killer (NK) cell cytotoxicity and impaired ion channel function, namely Transient Receptor Potential Melastatin 3 (TRPM3). Long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has resulted in neurocognitive, immunological, gastrointestinal, and cardiovascular manifestations recently recognised as post coronavirus disease 2019 (COVID-19) condition. The symptomatology of ME/CFS overlaps significantly with post COVID-19; therefore, this research aimed to investigate TRPM3 ion channel function in post COVID-19 condition patients. METHODS: Whole-cell patch-clamp technique was used to measure TRPM3 ion channel activity in isolated NK cells of N = 5 ME/CFS patients, N = 5 post COVID-19 patients, and N = 5 healthy controls (HC). The TRPM3 agonist, pregnenolone sulfate (PregS) was used to activate TRPM3 function, while ononetin was used as a TRPM3 antagonist. RESULTS: As reported in previous research, PregS-induced TRPM3 currents were significantly reduced in ME/CFS patients compared with HC (p = 0.0048). PregS-induced TRPM3 amplitude was significantly reduced in post COVID-19 condition compared with HC (p = 0.0039). Importantly, no significant difference was reported in ME/CFS patients compared with post COVID-19 condition as PregS-induced TRPM3 currents of post COVID-19 condition patients were similar of ME/CFS patients currents (p > 0.9999). Isolated NK cells from post COVID-19 condition and ME/CFS patients were resistant to ononetin and differed significantly with HC (p < 0.0001). CONCLUSION: The results of this investigation suggest that post COVID-19 condition patients may have impaired TRPM3 ion channel function and provide further evidence regarding the similarities between post COVID-19 condition and ME/CFS. Impaired TRPM3 channel activity in post COVID-19 condition patients suggest impaired ion mobilisation which may consequently impede cell function resulting in chronic post-infectious symptoms. Further investigation into TRPM3 function may elucidate the pathomechanism, provide a diagnostic and therapeutic target for post COVID-19 condition patients and commonalities with ME/CFS patients.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , COVID-19/complicaciones , Humanos , Células Asesinas Naturales , Técnicas de Placa-Clamp , SARS-CoV-2
7.
J Transl Med ; 20(1): 94, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172836

RESUMEN

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious disorder of unknown aetiology. While the pathomechanism of ME/CFS remains elusive, reduced natural killer (NK) cell cytotoxic function is a consistent immunological feature. NK cell effector functions rely on long-term sustained calcium (Ca2+) influx. In recent years evidence of transient receptor potential melastatin 3 (TRPM3) dysfunction supports the hypothesis that ME/CFS is potentially an ion channel disorder. Specifically, reports of single nucleotide polymorphisms, low surface expression and impaired function of TRPM3 have been reported in NK cells of ME/CFS patients. It has been reported that mu (µ)-opioid receptor (µOR) agonists, known collectively as opioids, inhibit TRPM3. Naltrexone hydrochloride (NTX), a µOR antagonist, negates the inhibitory action of µOR on TRPM3 function. Importantly, it has recently been reported that NTX restores impaired TRPM3 function in NK cells of ME/CFS patients. METHODS: Live cell immunofluorescent imaging was used to measure TRPM3-dependent Ca2+ influx in NK cells isolated from n = 10 ME/CFS patients and n = 10 age- and sex-matched healthy controls (HC) following modulation with TRPM3-agonist, pregnenolone sulfate (PregS) and TRPM3-antaognist, ononetin. The effect of overnight (24 h) NTX in vitro treatment on TRPM3-dependent Ca2+ influx was determined. RESULTS: The amplitude (p < 0.0001) and half-time of Ca2+ response (p < 0.0001) was significantly reduced at baseline in NK cells of ME/CFS patients compared with HC. Overnight treatment of NK cells with NTX significantly improved TRPM3-dependent Ca2+ influx in ME/CFS patients. Specifically, there was no significance between HC and ME/CFS patients for half-time response, and the amplitude of Ca2+ influx was significantly increased in ME/CFS patients (p < 0.0001). CONCLUSION: TRPM3-dependent Ca2+ influx was restored in ME/CFS patients following overnight treatment of isolated NK cells with NTX in vitro. Collectively, these findings validate that TRPM3 loss of function results in altered Ca2+ influx supporting the growing evidence that ME/CFS is a TRP ion channel disorder and that NTX provides a potential therapeutic intervention for ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Canales Catiónicos TRPM , Calcio/metabolismo , Humanos , Células Asesinas Naturales , Naltrexona/farmacología , Naltrexona/uso terapéutico , Canales Catiónicos TRPM/metabolismo
8.
Pulm Pharmacol Ther ; 70: 102059, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34302984

RESUMEN

Transient receptor potential ankyrin-1 (TRPA1) is an ion channel mediating pain and cough signals in sensory neurons. We and others have shown that TRPA1 is also expressed in some non-neuronal cells and supports inflammatory responses. To address the pathogenesis and to uncover potential targets for pharmacotherapy in inflammatory lung diseases, we set out to study the expression of TRPA1 in human A549 lung epithelial cells under inflammatory conditions. TRPA1 expression was determined by RT-qPCR and Western blotting at a mRNA and protein level, respectively and its function was studied by Fluo 3-AM intracellular Ca2+ measurement in A549 lung epithelial cells. TRPA1 promoter activity was assessed by reporter gene assay. TRPA1 expression was very low in A549 cells in the absence of inflammatory stimuli. Tumor necrosis factor-α (TNF-α) significantly increased TRPA1 expression and a synergy was found between TNF-α, interleukin-1ß (IL-1ß) and interferon-γ (IFN-γ). Reporter gene experiments indicate that the combination of TNF-α and IL-1ß increases TRPA1 promoter activity while the effect of IFN-γ seems to be non-transcriptional. Interestingly, the glucocorticoid dexamethasone downregulated TRPA1 expression in A549 cells by reducing TRPA1 mRNA stability in a transcription-dependent manner. Furthermore, pharmacological blockade of TRPA1 reduced the production of the pro-inflammatory cytokine IL-8. In conclusion, TRPA1 was found to be expressed and functional in human A549 lung epithelial cells under inflammatory conditions. The anti-inflammatory steroid dexamethasone reduced TRPA1 expression through post-transcriptional mechanisms. The results reveal TRPA1 as a potential mediator and drug target in inflammatory lung conditions.


Asunto(s)
Citocinas , Pulmón , Canal Catiónico TRPA1 , Células A549 , Células Epiteliales , Expresión Génica , Humanos , Canal Catiónico TRPA1/genética , Factor de Necrosis Tumoral alfa
9.
Front Immunol ; 12: 687806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326841

RESUMEN

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic condition of unknown aetiology classified as an immune dysfunction syndrome and neurological disorder. The discovery of the widely expressed Transient Receptor Potential Melastatin 3 (TRPM3) as a nociceptor channel substantially targeted by certain opioid receptors, and its implication in calcium (Ca2+)-dependent Natural Killer (NK) cell immune functions has raised the possibility that TRPM3 may be pharmacologically targeted to treat characteristic symptoms of ME/CFS. Naltrexone hydrochloride (NTX) acts as an antagonist to the mu (µ)-opioid receptor thus negating its inhibitory function on TRPM3. Based on the benefits reported by patients on their symptoms, low dose NTX (LDN, 3.0-5.0 mg/day) treatment seems to offer some potential benefit suggesting that its effect may be targeted towards the pathomechanism of ME/CFS. As there is no literature confirming the efficacy of LDN for ME/CFS patients in vitro, this study investigates the potential therapeutic effect of LDN in ME/CFS patients. TRPM3 ion channel activity was measured after modulation with Pregnenolone sulfate (PregS) and ononetin in NK cells on 9 ME/CFS patients taking LDN and 9 age- and sex-matched healthy controls using whole-cell patch-clamp technique. We report that ME/CFS patients taking LDN have restored TRPM3-like ionic currents in NK cells. Small ionic currents with a typical TRPM3-like outward rectification were measured after application of PregS, a TRPM3-agonist, in NK cells from patients taking LDN. Additionally, PregS-evoked ionic currents through TRPM3 were significantly modulated by ononetin, a TRPM3-antagonist, in NK cells from ME/CFS patients taking LDN. These data support the hypothesis that LDN may have potential as a treatment for ME/CFS by characterising the underlying regulatory mechanisms of LDN treatment involving TRPM3 and opioid receptors in NK cells. Finally, this study may serve for the repurpose of marketed drugs, as well as support the approval of prospective randomized clinical studies on the role and dose of NTX in treating ME/CFS patients.


Asunto(s)
Síndrome de Fatiga Crónica/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Naltrexona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Receptores Opioides mu/antagonistas & inhibidores , Canales Catiónicos TRPM/efectos de los fármacos , Adulto , Señalización del Calcio/efectos de los fármacos , Estudios de Casos y Controles , Reposicionamiento de Medicamentos , Síndrome de Fatiga Crónica/inmunología , Síndrome de Fatiga Crónica/metabolismo , Síndrome de Fatiga Crónica/fisiopatología , Femenino , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Persona de Mediana Edad , Naltrexona/efectos adversos , Antagonistas de Narcóticos/efectos adversos , Receptores Opioides mu/metabolismo , Canales Catiónicos TRPM/metabolismo , Resultado del Tratamiento
10.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198528

RESUMEN

Intracellular free zinc ([Zn2+]i) is mobilized in neuronal and non-neuronal cells under physiological and/or pathophysiological conditions; therefore, [Zn2+]i is a component of cellular signal transduction in biological systems. Although several transporters and ion channels that carry Zn2+ have been identified, proteins that are involved in Zn2+ supply into cells and their expression are poorly understood, particularly under inflammatory conditions. Here, we show that the expression of Zn2+ transporters ZIP8 and ZIP14 is increased via the activation of hypoxia-induced factor 1α (HIF-1α) in inflammation, leading to [Zn2+]i accumulation, which intrinsically activates transient receptor potential ankyrin 1 (TRPA1) channel and elevates basal [Zn2+]i. In human fibroblast-like synoviocytes (FLSs), treatment with inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), evoked TRPA1-dependent intrinsic Ca2+ oscillations. Assays with fluorescent Zn2+ indicators revealed that the basal [Zn2+]i concentration was significantly higher in TRPA1-expressing HEK cells and inflammatory FLSs. Moreover, TRPA1 activation induced an elevation of [Zn2+]i level in the presence of 1 µM Zn2+ in inflammatory FLSs. Among the 17 out of 24 known Zn2+ transporters, FLSs that were treated with TNF-α and IL-1α exhibited a higher expression of ZIP8 and ZIP14. Their expression levels were augmented by transfection with an active component of nuclear factor-κB P65 and HIF-1α expression vectors, and they could be abolished by pretreatment with the HIF-1α inhibitor echinomycin (Echi). The functional expression of ZIP8 and ZIP14 in HEK cells significantly increased the basal [Zn2+]i level. Taken together, Zn2+ carrier proteins, TRPA1, ZIP8, and ZIP14, induced under HIF-1α mediated inflammation can synergistically change [Zn2+]i in inflammatory FLSs.


Asunto(s)
Proteínas de Transporte de Catión/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/genética , Sinoviocitos/metabolismo , Canal Catiónico TRPA1/genética , Regulación hacia Arriba/genética , Zinc/metabolismo , Proteínas de Transporte de Catión/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inflamación/patología , Espacio Intracelular/metabolismo , Sinoviocitos/patología , Canal Catiónico TRPA1/metabolismo
11.
Sci Rep ; 9(1): 16876, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727906

RESUMEN

Glucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic ß-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca2+ permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca2+ permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release. Two rat ß-cell lines (INS-1 and BRIN-BD11) and freshly-isolated mouse pancreatic islets were studied. Intracellular Ca2+ measurements were performed using the fura-2 Ca2+ indicator dye and ionic current was recorded by whole cell patch-clamp. Piezo1 agonist Yoda1, a competitive antagonist of Yoda1 (Dooku1) and an inactive analogue of Yoda1 (2e) were used as chemical probes. Piezo1 mRNA and insulin secretion were measured by RT-PCR and ELISA respectively. Piezo1 mRNA was detected in both ß-cell lines and mouse islets. Yoda1 evoked Ca2+ entry was inhibited by Yoda1 antagonist Dooku1 as well as other Piezo1 inhibitors gadolinium and ruthenium red, and not mimicked by 2e. Yoda1, but not 2e, stimulated Dooku1-sensitive insulin release from ß-cells and pancreatic islets. Hypotonicity and high glucose increased intracellular Ca2+ and enhanced Yoda1 Ca2+ influx responses. Yoda1 and hypotonicity induced insulin release were significantly inhibited by Piezo1 specific siRNA. Pancreatic islets from mice with haploinsufficiency of Piezo1 released less insulin upon exposure to Yoda1. The data show that Piezo1 channel agonist induces insulin release from ß-cell lines and mouse pancreatic islets suggesting a role for Piezo1 in cell swelling induced insulin release. Hence Piezo1 agonists have the potential to be used as enhancers of insulin release.


Asunto(s)
Calcio/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Canales Iónicos/genética , Proteínas de la Membrana/genética , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Gadolinio/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Heterocigoto , Secreción de Insulina/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pirazinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Rojo de Rutenio/farmacología , Tiadiazoles/farmacología , Técnicas de Cultivo de Tejidos
12.
Front Immunol ; 10: 2545, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736966

RESUMEN

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a seriously long-term and debilitating illness of unknown cause hallmarked by chronic pain and fatigue, memory and concentration impairment, and inflammation. ME/CFS hypothesis involves impaired Transient receptor potential melastatin 3 (TRPM3) ion channel function, affecting calcium signaling and Natural killer (NK) cell functions. Currently, substances called opioids, agonists of mu (µ)-opioid receptors (µOR), are the strongest painkillers clinically available for people suffering from strong or long-lasting pain characteristic of ME/CFS. µOR have been reported to specifically inhibit TRPM3 and to be expressed in immune cells where they play an immunomodulatory and immunosuppressive role. Naltrexone hydrochloride (NTX) acts as an antagonist to the µOR thus negating the inhibitory function of this opioid receptor on TRPM3. Therefore, understanding the mechanism of action for NTX in regulating and modulating TRPM3 channel function in NK cells will provide important information for the development of effective therapeutic interventions for ME/CFS. Whole-cell patch-clamp technique was used to measure TRPM3 activity in Interleukin-2 (IL-2) stimulated and NTX-treated NK cells for 24 h on eight ME/CFS patients and 8 age- and sex-matched healthy controls, after modulation with a TRPM3-agonist, pregnenolone sulfate (PregS), NTX and a TRPM3-antagonist, ononetin. We confirmed impaired TRPM3 function in ME/CFS patients through electrophysiological investigations in IL-2 stimulated NK cells after modulation with PregS and ononetin. Importantly, TRPM3 channel activity was restored in IL-2 stimulated NK cells isolated from ME/CFS patients after incubation for 24 h with NTX. Moreover, we demonstrated that NTX does not act as an agonist by directly coupling on the TRPM3 ion channel gating. The opioid antagonist NTX has the potential to negate the inhibitory function of opioid receptors on TRPM3 in NK cells from ME/CFS patients, resulting in calcium signals remodeling, which will in turn affect cell functions, supporting the hypothesis that NTX may have potential for use as a treatment for ME/CFS. Our results demonstrate, for the first time, and based on novel patch clamp electrophysiology, potential pharmaco-therapeutic interventions in ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Células Asesinas Naturales , Naltrexona/administración & dosificación , Canales Catiónicos TRPM/inmunología , Adulto , Síndrome de Fatiga Crónica/tratamiento farmacológico , Síndrome de Fatiga Crónica/inmunología , Síndrome de Fatiga Crónica/patología , Femenino , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Masculino , Persona de Mediana Edad
13.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597314

RESUMEN

Mechanical-loading and unloading can modify osteoblast functioning. Ca2+ signaling is one of the earliest events in osteoblasts to induce a mechanical stimulus, thereby demonstrating the importance of the underlying mechanical sensors for the sensation. Here, we examined the mechano-sensitive channels PIEZO1 and TRPV4 were involved in the process of mechano-sensation in the osteoblastic MC3T3-E1 cells. The analysis of mRNA expression revealed a high expression of Piezo1 and Trpv4 in these cells. We also found that a PIEZO1 agonist, Yoda1, induced Ca2+ response and activated cationic currents in these cells. Ca2+ response was elicited when mechanical stimulation (MS), with shear stress, was induced by fluid flow in the MC3T3-E1 cells. Gene knockdown of Piezo1 in the MC3T3-E1 cells, by transfection with siPiezo1, inhibited the Yoda1-induced response, but failed to inhibit the MS-induced response. When MC3T3-E1 cells were transfected with siTrpv4, the MS-induced response was abolished and Yoda1 response was attenuated. Moreover, the MS-induced response was inhibited by a TRPV4 antagonist HC-067047 (HC). Yoda1 response was also inhibited by HC in MC3T3-E1 cells and HEK cells, expressing both PIEZO1 and TRPV4. Meanwhile, the activation of PIEZO1 and TRPV4 reduced the proliferation of MC3T3-E1, which was reversed by knockdown of PIEZO1, and TRPV4, respectively. In conclusion, TRPV4 and PIEZO1 are distinct mechano-sensors in the MC3T3-E1 cells. However, PIEZO1 and TRPV4 modify the proliferation of these cells, implying that PIEZO1 and TRPV4 may be functional in the osteoblastic mechano-transduction. Notably, it is also found that Yoda1 can induce TRPV4-dependent Ca2+ response, when both PIEZO1 and TRPV4 are highly expressed.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular , Osteoblastos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Línea Celular , Proliferación Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Canales Iónicos/genética , Potenciales de la Membrana , Ratones , Estrés Mecánico , Canales Catiónicos TRPV/genética
14.
J Biol Chem ; 294(46): 17395-17408, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586031

RESUMEN

Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/- cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling.


Asunto(s)
Interleucina-6/genética , Canales Iónicos/genética , Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Señalización del Calcio/genética , Endopeptidasas/genética , Células Endoteliales/química , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/química , Canales Iónicos/química , Sistema de Señalización de MAP Quinasas/genética , Mecanotransducción Celular/genética , Ratones , Miocardio/química , Fosforilación/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Tioléster Hidrolasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/química
15.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438481

RESUMEN

A-type K+ channels contribute to regulating the propagation and frequency of action potentials in smooth muscle cells (SMCs). The present study (i) identified the molecular components of A-type K+ channels in rat vas deferens SMs (VDSMs) and (ii) showed the long-term, genomic effects of testosterone on their expression in VDSMs. Transcripts of the A-type K+ channel α subunit, Kv4.3L and its regulatory ß subunits, KChIP3, NCS1, and DPP6-S were predominantly expressed in rat VDSMs over the other related subtypes (Kv4.2, KChIP1, KChIP2, KChIP4, and DPP10). A-type K+ current (IA) density in VDSM cells (VDSMCs) was decreased by castration without changes in IA kinetics, and decreased IA density was compensated for by an oral treatment with 17α-methyltestosterone (MET). Correspondingly, in the VDSMs of castrated rats, Kv4.3L and KChIP3 were down-regulated at both the transcript and protein expression levels. Changes in Kv4.3L and KChIP3 expression levels were compensated for by the treatment with MET. These results suggest that testosterone level changes in testosterone disorders and growth processes control the functional expression of A-type K+ channels in VDSMCs.


Asunto(s)
Castración/efectos adversos , Regulación hacia Abajo , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Conducto Deferente/metabolismo , Animales , Western Blotting , Electrofisiología , Masculino , Metiltestosterona/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Ratas Wistar , Testosterona/metabolismo , Conducto Deferente/efectos de los fármacos
16.
Br J Pharmacol ; 176(20): 3924-3938, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31277085

RESUMEN

BACKGROUND AND PURPOSE: The TRPC1, TRPC4, and TRPC5 proteins form homotetrameric or heterotetrameric, calcium-permeable cation channels that are involved in various disease states. Recent research has yielded specific and potent xanthine-based TRPC1/4/5 inhibitors. Here, we investigated the possibility of xanthine-based activators of these channels. EXPERIMENTAL APPROACH: An analogue of the TRPC1/4/5 inhibitor Pico145, AM237, was synthesized and its activity was investigated using HEK cells overexpressing TRPC4, TRPC5, TRPC4-C1, TRPC5-C1, TRPC1:C4 or TRPC1:C5 channels, and in A498 cells expressing native TRPC1:C4 channels. TRPC1/4/5 channel activities were assayed by measuring intracellular concentration of Ca2+ ([Ca2+ ]i ) and by patch-clamp electrophysiology. Selectivity of AM237 was tested against TRPC3, TRPC6, TRPV4, or TRPM2 channels. KEY RESULTS: AM237 potently activated TRPC5:C5 channels (EC50 15-20 nM in [Ca2+ ]i assay) and potentiated their activation by sphingosine-1-phosphate but suppressed activation evoked by (-)-englerin A (EA). In patch-clamp studies, AM237 activated TRPC5:C5 channels, with greater effect at positive voltages, but with lower efficacy than EA. Pico145 competitively inhibited AM237-induced TRPC5:C5 activation. AM237 did not activate TRPC4:C4, TRPC4-C1, TRPC5-C1, TRPC1:C5, and TRPC1:C4 channels, or native TRPC1:C4 channels in A498 cells, but potently inhibited EA-dependent activation of these channels with IC50 values ranging from 0.9 to 7 nM. AM237 (300 nM) did not activate or inhibit TRPC3, TRPC6, TRPV4, or TRPM2 channels. CONCLUSIONS AND IMPLICATIONS: This study suggests the possibility for selective activation of TRPC5 channels by xanthine derivatives and supports the general principle that xanthine-based compounds can activate, potentiate, or inhibit these channels depending on subunit composition.


Asunto(s)
Compuestos Heterocíclicos con 2 Anillos/farmacología , Purinas/farmacología , Canales Catiónicos TRPC/metabolismo , Calcio/análisis , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/química , Humanos , Estructura Molecular , Técnicas de Placa-Clamp , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad , Canales Catiónicos TRPC/antagonistas & inhibidores
17.
ACS Chem Neurosci ; 10(6): 2848-2857, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31034197

RESUMEN

TRPA1 is a nonselective cation channel, most famously expressed in nonmyelinated nociceptors. In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently appeared to have a role also in inflammation. Triterpenoids are natural products with anti-inflammatory and anticancer effects in experimental models. In this paper, 13 novel triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus Betula L., and their TRPA1-modulating properties were examined. The Fluo 3-AM protocol was used in the initial screening, in which six of the 14 tested triterpenoids inhibited TRPA1 in a statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose- and voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. Interestingly, the TRPA1 blocking action was also evident in vivo, as compounds 8 and 9 both alleviated TRPA1 agonist-induced acute paw inflammation in mice. The results introduce betulin-derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially useful in treating diseases with a TRPA1-mediated adverse component.


Asunto(s)
Antiinflamatorios/farmacología , Canal Catiónico TRPA1/antagonistas & inhibidores , Triterpenos/farmacología , Animales , Células HEK293 , Humanos , Inflamación , Ratones , Pirazinas/farmacología , Triterpenos/química
18.
J Appl Toxicol ; 39(5): 717-725, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30575053

RESUMEN

Cigarette smoke (CS) is a complex mixture of chemicals and interacts with various physiological processes. We previously reported that nuclear factor erythroid 2-related factor 2 (NRF2) was the most sensitive transcription factor to aqueous CS extract (AqCSE) exposure in monolayer cultured human bronchial epithelial cell lines. Recently, in vitro three-dimensional (3D) culture models have been used to supplement pharmacological and toxicological assessments. Bronchial epithelium models in particular are useful for the evaluation of substances that directly contact the respiratory tract, such as CS. In the present study, we used 3D-cultured human bronchial epithelial cells (HBECs) to assess activation of transcription factors and relevant gene expression in response to AqCSE, primarily focusing on NRF2 and nuclear factor-kappa B (NF-κB) pathways. The 3D-cultured HBECs exposed to AqCSE showed expression of NRF2 and its nuclear translocation in addition to upregulation of genes related to oxidative stress. Our results suggest that the NRF2 pathway was the dominant pathway when 3D-cultured HBECs were exposed to AqCSE at a low dose, supporting our previous findings that NRF2 was the most sensitive transcription factor in response to AqCSE. Expression and nuclear translocation of NF-κB were not increased, although proinflammatory genes were upregulated. However, another inflammation-related transcription factor, activation protein 1, was induced by AqCSE. Gene classification analysis suggested that induction of the inflammatory response by AqCSE was dependent on NRF2 and activation protein 1 rather than NF-κB.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Nicotiana/toxicidad , Humo/efectos adversos , Factor de Transcripción AP-1/metabolismo , Adulto , Bronquios/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Fumar/efectos adversos , Factor de Transcripción AP-1/genética
19.
Mol Med ; 24(1): 44, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30134818

RESUMEN

BACKGROUND: Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME) is a debilitating disorder that is accompanied by reduced cytotoxic activity in natural killer (NK) cells. NK cells are an essential innate immune cell, responsible for recognising and inducing apoptosis of tumour and virus infected cells. Calcium is an essential component in mediating this cellular function. Transient Receptor Potential Melastatin 3 (TRPM3) cation channels have an important regulatory role in mediating calcium influx to help maintain cellular homeostasis. Several single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in patients with CFS/ME and have been proposed to correlate with illness presentation. Moreover, a significant reduction in both TRPM3 surface expression and intracellular calcium mobilisation in NK cells has been found in CFS/ME patients compared with healthy controls. Despite the functional importance of TRPM3, little is known about the ion channel function in NK cells and the epiphenomenon of CFS/ME. The objective of the present study was to characterise the TRPM3 ion channel function in NK cells from CFS/ME patients in comparison with healthy controls using whole cell patch-clamp techniques. METHODS: NK cells were isolated from 12 age- and sex-matched healthy controls and CFS patients. Whole cell electrophysiology recording has been used to assess TRPM3 ion channel activity after modulation with pregnenolone sulfate and ononetin. RESULTS: We report a significant reduction in amplitude of TRPM3 current after pregnenolone sulfate stimulation in isolated NK cells from CFS/ME patients compared with healthy controls. In addition, we found pregnenolone sulfate-evoked ionic currents through TRPM3 channels were significantly modulated by ononetin in isolated NK cells from healthy controls compared with CFS/ME patients. CONCLUSIONS: TRPM3 activity is impaired in CFS/ME patients suggesting changes in intracellular Ca2+ concentration, which may impact NK cellular functions. This investigation further helps to understand the intracellular-mediated roles in NK cells and confirm the potential role of TRPM3 ion channels in the aetiology and pathomechanism of CFS/ME.


Asunto(s)
Síndrome de Fatiga Crónica/fisiopatología , Células Asesinas Naturales/fisiología , Canales Catiónicos TRPM/fisiología , Adulto , Femenino , Humanos , Células Asesinas Naturales/efectos de los fármacos , Masculino , Persona de Mediana Edad , Pregnenolona/farmacología
20.
Cells ; 7(6)2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29865154

RESUMEN

Proteins of the TRPC family can form many homo- and heterotetrameric cation channels permeable to Na⁺, K⁺ and Ca2+. In this review, we focus on channels formed by the isoforms TRPC1, TRPC4 and TRPC5. We review evidence for the formation of different TRPC1/4/5 tetramers, give an overview of recently developed small-molecule TRPC1/4/5 activators and inhibitors, highlight examples of biological roles of TRPC1/4/5 channels in different tissues and pathologies, and discuss how high-quality chemical probes of TRPC1/4/5 modulators can be used to understand the involvement of TRPC1/4/5 channels in physiological and pathophysiological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...