RESUMEN
Introduction: 5p deletion syndrome, also called Cri-du-chat syndrome 5p is a rare genetic syndrome with reports up to 36% of patients are associated with congenital heart defects. We investigated the association between left outflow tract obstruction and Cri-du-chat syndrome. Methods: A retrospective review of the abnormal microarray cases with congenital heart defects in Children's Hospital of Pittsburgh and the Cytogenomics of Cardiovascular Malformations Consortium. Results: A retrospective review at nine pediatric centers identified 4 patients with 5p deletions and left outflow tract obstruction (LVOTO). Three of these patients had additional copy number variants. We present data suggesting an association of LVOTO with 5p deletion with high mortality in the presence of additional copy number variants. Conclusion: A rare combination of 5p deletion and left ventricular outflow obstruction was observed in the registry of copy number variants and congenital heart defects.
RESUMEN
An infant presents in extremis. After the medical team stabilizes him, the race is on to figure out why he got so sick in the first place. The consulting genetics team thinks that it is unlikely his problems are due to a genetic cause, but his extreme, confounding presentation is enough to justify trio exome sequencing. When the results reveal an unexpected, paternally inherited variant of uncertain significance (VUS) in NOTCH3, fresh questions arise. The infant's presenting symptoms and descriptive diagnoses, including hematemesis, epistaxis, and gastric ulcers, certainly do not fit the mold of CADASIL. However, closer inspection of his family history yields tantalizing clues: a father and paternal grandfather with seizures, and a paternal grandfather with unexplained mood disturbances in middle age. Combining details gleaned from the family history and medical literature, the clinical genetics and laboratory genetics team collaborated, reclassified the VUS as likely pathogenic, and offered a new unifying diagnosis to explain much of the family's lore.
RESUMEN
An early career geneticist confronts the limits of our field when a critically ill infant is diagnosed with an ultra-rare metabolic disorder.
RESUMEN
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
RESUMEN
PURPOSE: The aim of this qualitative study was to investigate resilience among adults with Osteogenesis Imperfecta (OI). MATERIALS AND METHODS: Semi-structured interviews were conducted with 15 adults with OI. Transcripts were coded and subsequently abstracted, yielding themes specific to resilience and coping. Interview guides covered broad topics including pain challenges specific to OI, mental health issues related to OI, and priorities for future interventions for individuals with OI. RESULTS: Participants described resilience in the context of OI as the ability to grow from adversity, adapt to challenges resulting from OI-related injuries, and find identities apart from their condition. Psychological coping strategies included acceptance, self-efficacy, cognitive reframing, perspective-taking, and positivity. Behavioral factors that helped participants develop resilience included developing new skills, pursuing meaningful goals, practicing spirituality, and seeking external resources such as psychotherapy, education, and connection with community. CONCLUSION: Having identified how adults with OI define resilience and the strategies they use to cope, we can now develop interventions and guide healthcare providers in improving psychological wellbeing in this population.
Adults with Osteogenesis Imperfecta (OI) employ resilience factors to combat mobility and pain-related issues.Adults with OI report developing adaptive skills to cope with their disease, including forming one's identity outside of OI, growing through adversity, overcoming challenges resulting from OI-related injury, employing psychological adaptations, and practicing behavioral coping strategies.Resiliency factors such as behavioral and psychological coping (e.g., exercise, breathing strategies, acceptance) may buffer against OI-related challenges, and treatment modalities that foster these activities may be beneficial for adults with OI.
RESUMEN
PURPOSE: Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS: The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS: We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION: To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.
Asunto(s)
Secuenciación del Exoma , Pruebas Genéticas , Poblaciones Vulnerables , Humanos , Femenino , Masculino , Pruebas Genéticas/métodos , Adulto , Persona de Mediana Edad , Área sin Atención Médica , Exoma/genética , Accesibilidad a los Servicios de Salud , Adolescente , Genómica/métodos , Adulto Joven , AncianoRESUMEN
Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and fractures, short stature, dental abnormalities, hearing loss, scoliosis, and chronic pain. Despite a growing literature on the functional outcomes of OI, limited research has explicitly examined the psychosocial outcomes of pain within OI. Adults with OI (N = 15) were interviewed to understand pain-related experiences through a thematic analysis of semi-structured interview data. Research team members, genetic research experts, and OI clinicians developed an interview guide focused on topics related to pain and mental health challenges. Participants' transcripts were coded by two independent coders; codes were then merged across coders and quotation outputs were subsequently abstracted (paraphrased then thematically classified) to identify common themes. Themes related to pain management variability regarding pain type, pain risk management and accessibility, pain outcomes (e.g., behavior, cognitive, affective), and pain exacerbating factors (e.g., individual, contextual) were identified. Participants reported chronic and acute pain, and despite the inaccessibility and stigmatization of pain medications (e.g., opioids), pharmacological treatments were the most common pain management approach. Participants reported negative pain outcomes, such as limited daily functioning and activity participation, fear, anger, anxiety, depression, and difficulty concentrating. Lastly, participants suggested that lack of physician and community knowledge on chronic pain in OI indirectly exacerbates both subjective pain intensity and outcomes. Although limited by a small, nondiverse sample, the current study provides valuable exploration of the unique pain experiences of adults with OI that may have implications for proactive management, treatment development, and clinician training.
Asunto(s)
Dolor Crónico , Osteogénesis Imperfecta , Manejo del Dolor , Investigación Cualitativa , Humanos , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/psicología , Femenino , Masculino , Adulto , Manejo del Dolor/métodos , Manejo del Dolor/psicología , Persona de Mediana Edad , Dolor Crónico/psicología , Dolor Crónico/complicaciones , Adulto JovenRESUMEN
Thrombocytopenia can be inherited or acquired from a variety of causes. While hereditary causes of thrombocytopenia are rare, several genes have been associated with the condition. In this report, we describe an 18-year-old man and his mother, both of whom have congenital thrombocytopenia. Exome sequencing in the man revealed a 1006 kb maternally inherited deletion in the 10p12.1 region (arr[GRCh37] 10p12.1(27378928_28384564)x1) of uncertain clinical significance. This deletion in the THC2 locus includes genes ANKRD26, known to be involved in normal megakaryocyte differentiation, and MASTL, which some studies suggest is linked to autosomal dominant thrombocytopenia. In the family presented here, the deletion segregated with the congenital thrombocytopenia phenotype, suggesting that haploinsufficiency of one or both genes may be the cause. To our knowledge, this is the first report of a deletion of the THC2 locus associated with thrombocytopenia. Future functional studies of deletions of the THC2 locus may elucidate the mechanism for this phenotype observed clinically.
Asunto(s)
Trastornos de los Cromosomas , Trombocitopenia , Humanos , Adolescente , Trombocitopenia/genética , Trombocitopenia/congénito , Trastornos de los Cromosomas/genética , Rotura Cromosómica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function (LoF) or gain-of-function (GoF) properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12), and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for LoF and GoF variants. GoF variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age one month), hypertonic, and more often had movement disorders, including hyperekplexia. Patients with LoF variants were older at the time of seizure onset (median age 16 months), hypotonic, and had sleeping disturbances. LoF and GoF variants were disease-causing in both sexes but affected males often carried de novo or hemizygous LoF variants inherited from healthy mothers, whereas all but one affected females had de novo heterozygous GoF variants.
RESUMEN
Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well-recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal-related pathways were over-represented in single-gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype-phenotype associations in CHD patients with abnormal CMA.
Asunto(s)
Cardiopatías Congénitas , Niño , Humanos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Corazón , Genómica , Ventrículos Cardíacos , Análisis por MicromatricesRESUMEN
PURPOSE: Individuals with urea cycle disorders (UCDs) may develop recurrent hyperammonemia, episodic encephalopathy, and neurological sequelae which can impact Health-related Quality of Life (HRQoL). To date, there have been no systematic studies of HRQoL in people with UCDs. METHODS: We reviewed HRQoL and clinical data for 190 children and 203 adults enrolled in a multicenter UCD natural history study. Physical and psychosocial HRQoL in people with UCDs were compared to HRQoL in healthy people and people with phenylketonuria (PKU) and diabetes mellitus. We assessed relationships between HRQoL, UCD diagnosis, and disease severity. Finally, we calculated sample sizes required to detect changes in these HRQoL measures. RESULTS: Individuals with UCDs demonstrated worse physical and psychosocial HRQoL than their healthy peers and peers with PKU and diabetes. In children, HRQoL scores did not differ by diagnosis or severity. In adults, individuals with decreased severity had worse psychosocial HRQoL. Finally, we show that a large number of individuals would be required in clinical trials to detect differences in HRQoL in UCDs. CONCLUSION: Individuals with UCDs have worse HRQoL compared to healthy individuals and those with PKU and diabetes. Future work should focus on the impact of liver transplantation and other clinical variables on HRQoL in UCDs.
Asunto(s)
Diabetes Mellitus , Hiperamonemia , Trasplante de Hígado , Fenilcetonurias , Trastornos Innatos del Ciclo de la Urea , Niño , Humanos , Adulto , Calidad de Vida , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Hiperamonemia/diagnóstico , Fenilcetonurias/complicaciones , Estudios Multicéntricos como AsuntoRESUMEN
Ferritin, the iron-storage protein, is composed of light- and heavy-chain subunits, encoded by FTL and FTH1, respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole-exome sequencing, with a recurrent variant (p.Phe171∗) identified in four unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia, and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminal variants in FTH1 truncate ferritin's E helix, altering the 4-fold symmetric pores of the heteropolymer, and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a disorder in the spectrum of NBIA. Targeted knockdown of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this pediatric neurodegenerative disorder.
Asunto(s)
Apoferritinas , Trastornos del Metabolismo del Hierro , Distrofias Neuroaxonales , Humanos , Niño , Apoferritinas/genética , Trastornos del Metabolismo del Hierro/genética , Hierro/metabolismo , Ferritinas/genética , Oxidorreductasas/metabolismoRESUMEN
Osteogenesis imperfecta (OI) is a pleiotropic, heritable connective tissue disorder associated with a wide range of health implications, including frequent bone fracture. While progress has been made to understand the spectrum of these physical health implications, the impact of OI on psychosocial well-being, as well as protective factors that buffer against adverse psychosocial outcomes, remain understudied. This present study relies on a qualitative approach to assess patient perspectives on both protective and adverse psychosocial factors specific to OI in 15 adults with varying disease status. Semi-structured interviews were conducted, subsequently coded, and themes extracted. Themes concerning psychosocial burdens (i.e., negative affective and behavioral impacts of disease status) and protective factors were identified from cooperatively-coded transcripts (two coders per transcript). Participants reported experiencing an increase in negative affect and disease-related distress after fracturing a bone and during recovery. Fear and concern specific to the uncertainty of future bone fractures and negative self-image was common. In contrast to these negative impacts, participants additionally described positive orientations toward their disease and attributed positive traits to their lived experience with a chronic disease. While limited due to small sample size and lack of ethno-racial diversity, findings highlight a need for continued research on the relationship between OI disease status and psychosocial outcomes, as well as the development of psychological interventions designed for OI populations. Findings have relevant clinical applications for healthcare providers working with those diagnosed with OI.
Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Humanos , Adulto , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/complicaciones , Fracturas Óseas/epidemiología , Fracturas Óseas/complicaciones , Miedo , Fenotipo , IncertidumbreRESUMEN
Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by FTL and FTH1 , respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole exome sequencing, with a recurrent de novo variant (p.F171*) identified in three unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in FTH1 truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a novel disorder in the spectrum of NBIA. Targeted knock-down of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this novel pediatric neurodegenerative disorder.
RESUMEN
TBL1XR1, which encodes transducing ß-like 1 X-linked receptor 1, is implicated in both Pierpont syndrome and intellectual developmental disorder, autosomal dominant-41 (MRD-41, OMIM #616944). While both conditions are autosomal dominant, variants associated with Pierpont syndrome are believed to behave in a dominant negative fashion, whereas those causing MRD-41 result in haploinsufficiency. Here, we present a patient with a de novo novel variant in TBL1XR1 (c.977G > A,p.S326N) identified by trio exome sequencing. Though a different variant at this same residue has previously been associated with MRD-41, our patient's presentation is suggestive of Pierpont syndrome. The patient's clinical phenotype, which includes short stature, developmental delay, dysmorphic craniofacial features, and plantar fat pads, more closely resembles that of known patients with Pierpont syndrome than MRD-41. Furthermore, this missense variant is directly adjacent to one previously associated with Pierpont syndrome and exists in the same region as all variants associated with Pierpont, on the inner surface of a WD40 ring. We propose this variant is a newly identified cause of Pierpont syndrome.
Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Humanos , Niño , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Facies , Discapacidad Intelectual/genética , Fenotipo , Proteínas Represoras/genética , Receptores Citoplasmáticos y Nucleares/genéticaRESUMEN
PURPOSE: TANGO2 deficiency disorder (TDD), an autosomal recessive disease first reported in 2016, is characterized by neurodevelopmental delay, seizures, intermittent ataxia, hypothyroidism, and life-threatening metabolic and cardiac crises. The purpose of this study was to define the natural history of TDD. METHODS: Data were collected from an ongoing natural history study of patients with TDD enrolled between February 2019 and May 2022. Data were obtained through phone or video based parent interviews and medical record review. RESULTS: Data were collected from 73 patients (59% male) from 57 unrelated families living in 16 different countries. The median age of participants at the time of data collection was 9.0 years (interquartile range = 5.3-15.9 years, range = fetal to 31.8 years). A total of 24 different TANGO2 alleles were observed. Patients showed normal development in early infancy, with progressive delay in developmental milestones thereafter. Symptoms included ataxia, dystonia, and speech difficulties, typically starting between the ages of 1 to 3 years. A total of 46/71 (65%) patients suffered metabolic crises, and of those, 30 (65%) developed cardiac crises. Metabolic crises were significantly decreased after the initiation of B-complex or multivitamin supplementation. CONCLUSION: We provide the most comprehensive review of natural history of TDD and important observational data suggesting that B-complex or multivitamins may prevent metabolic crises.
Asunto(s)
Ataxia , Convulsiones , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Embarazo , Atención PrenatalRESUMEN
The objective was to describe pain characteristics and treatments used in individuals with varying severity of osteogenesis imperfecta (OI) and investigate pain-associated variables. This work was derived from a multicenter, longitudinal, observational, natural history study of OI conducted at 12 clinical sites of the NIH Rare Diseases Clinical Research Network's Brittle Bone Disorders Consortium. Children and adults with a clinical, biochemical, or molecular diagnosis of OI were enrolled in the study. We did a cross-sectional analysis of chronic pain prevalence, characteristics, and treatments used for pain relief and longitudinal analysis to find the predictors of chronic pain. We included 861 individuals with OI, in 41.8% chronic pain was present, with similar frequency across OI types. Back pain was the most frequent location. Nonsteroidal anti-inflammatory drugs followed by bisphosphonates were the most common treatment used. Participants with chronic pain missed more days from school or work/year and performed worse in all mobility metrics than participants without chronic pain. The variables more significantly associated with chronic pain were age, sex, positive history of rodding surgery, scoliosis, other medical problems, assistive devices, lower standardized height, and higher body mass index. The predictors of chronic pain for all OI types were age, use of a wheelchair, and the number of fractures/year. Chronic pain is prevalent in OI across all OI types, affects mobility, and interferes with participation. Multiple covariates were associated with chronic pain.
Asunto(s)
Dolor Crónico , Fracturas Óseas , Osteogénesis Imperfecta , Niño , Adulto , Humanos , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/epidemiología , Estudios Transversales , Dolor Crónico/diagnóstico , Dolor Crónico/epidemiología , Dolor Crónico/etiología , Difosfonatos , Fracturas Óseas/complicaciones , Fracturas Óseas/epidemiologíaRESUMEN
TANGO2 disorder is a rare genetic disease with multi-system effects that causes episodic crises. Quality of life and psychosocial effects of this rare disease have not previously been studied. To examine health-related quality of life (HRQoL), illness perceptions, and lived experience, we surveyed 16 children and 31 parents of children with TANGO2 disorder identified via a disease-specific social media group and research foundation email distribution list. We assessed HRQoL by parent proxy-report and child self-report using the Pediatric Quality of Life Inventory (PedsQL™). Parental perceptions of their child's condition were assessed using the revised illness perceptions questionnaire adapted for TANGO2 disorder (IPQ-R-TANGO2). To collect qualitative data on parents' lived experience, we used novel open-ended survey questions. Parent proxy-reported (n = 29) physical (78.4 (21)) and psychosocial health (73.4 (12.8)) were highest among toddlers with TANGO2 disorder. Parent proxy-reported physical health was lowest in young adults (34.4 (35.4)), and psychosocial health was lowest in teens (40.8 (10.8)). When compared to previously published PedsQL™ scores in healthy children, parent-proxy reported summary and scale scores for TANGO2 patients were significantly lower (all p < 0.001). Parents' IPQ-R-TANGO2 responses (n = 26) suggested that parents perceived significant negative consequences of the disease. Parents' open-ended survey responses (n = 21) highlighted that they derived support from the TANGO2 community. This study characterizes HRQoL in patients with TANGO2 disorder across a range of ages, identifies potential targets for HRQoL improvement, and provides valuable insight into the psychosocial effects of TANGO2 disorder on patients and their families.
Asunto(s)
Encefalopatías Metabólicas , Calidad de Vida , Adolescente , Arritmias Cardíacas , Humanos , Padres/psicología , Calidad de Vida/psicología , Autoinforme , Encuestas y CuestionariosRESUMEN
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.