Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(26): 9035-9043, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37352490

RESUMEN

Vaporization is an important aspect of the performance and detection of energetic materials. While the traditional techniques concentrate on bulk property changes during sublimation, atomic force microscopy (AFM) offers the possibility to track particle volume changes under heating. Ideally, this will enable the investigation of chemicals that are challenging to study using conventional vaporization analysis methods, i.e., those having low thermal stability and/or low volatility. However, prior studies have demonstrated that novel structural effects at the nanoscale may interfere with sublimation mass loss. The present work aims to provide a comprehensive investigation of the sublimation of pentaerythritol tetranitrate (PETN) thin films with respect to the measurement parameters, the heating technique, the sample composition, and the type of the substrate. We observed the low-temperature recrystallization of thin-film islands during heating together with the sublimation process; this was demonstrated by the unexpected local increase in volume with temperature. Overall, AFM allows us to set up a precise nanoscale vaporization experiment and, in some instances, to obtain a reliable estimate of the sublimation enthalpy. However, it is crucial to consider the sample's morphology as well as any concurrent structural transformations in order to ensure the validity of the results.

2.
Chemistry ; 29(44): e202300948, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37216337

RESUMEN

The development of liquid energetic fuels with improved properties is an important topic in space propulsion technologies. In this manuscript, a series of energetic ionic liquids incorporating a 1,2,5-oxadiazole ring and nitrate, dicyanamide or dinitramide anion was synthesized and their physicochemical properties were evaluated. The synthesized compounds were fully characterized and were found to have good thermal stabilities (up to 219 °C) and experimental densities (1.21-1.47 g cm-3 ). Advantageously, 1,2,5-oxadiazole-based ionic liquids have high combined nitrogen-oxygen contents (up to 64.4 %), while their detonation velocities are on the level of known explosive TNT, and combustion performance exceeds those of benchmark 2-hydroxyethylhydrazinium nitrate. Considering the established hypergolicity with H2 O2 in the presence of a catalyst, and insensitivity to impact, synthesized ionic liquids have strong application potential as energetic fuels for space technologies.

3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982405

RESUMEN

Nitro derivatives of benzotriazoles are safe energetic materials with remarkable thermal stability. In the present study, we report on the kinetics and mechanism of thermal decomposition for 5,7-dinitrobenzotriazole (DBT) and 4-amino-5,7-dinitrobenzotriazole (ADBT). The pressure differential scanning calorimetry was employed to study the decomposition kinetics of DBT experimentally because the measurements under atmospheric pressure are disturbed by competing evaporation. The thermolysis of DBT in the melt is described by a kinetic scheme with two global reactions. The first stage is a strong autocatalytic process that includes the first-order reaction (Ea1I = 173.9 ± 0.9 kJ mol-1, log(A1I/s-1) = 12.82 ± 0.09) and the catalytic reaction of the second order with Ea2I = 136.5 ± 0.8 kJ mol-1, log(A2I/s-1) = 11.04 ± 0.07. The experimental study was complemented by predictive quantum chemical calculations (DLPNO-CCSD(T)). The calculations reveal that the 1H tautomer is the most energetically preferable form for both DBT and ADBT. Theory suggests the same decomposition mechanisms for DBT and ADBT, with the most favorable channels being nitro-nitrite isomerization and C-NO2 bond cleavage. The former channel has lower activation barriers (267 and 276 kJ mol-1 for DBT and ADBT, respectively) and dominates at lower temperatures. At the same time, due to the higher preexponential factor, the radical bond cleavage, with reaction enthalpies of 298 and 320 kJ mol-1, dominates in the experimental temperature range for both DBT and ADBT. In line with the theoretical predictions of C-NO2 bond energies, ADBT is more thermally stable than DBT. We also determined a reliable and mutually consistent set of thermochemical values for DBT and ADBT by combining the theoretically calculated (W1-F12 multilevel procedure) gas-phase enthalpies of formation and experimentally measured sublimation enthalpies.


Asunto(s)
Dióxido de Nitrógeno , Termodinámica , Temperatura , Rastreo Diferencial de Calorimetría , Cinética
4.
Phys Chem Chem Phys ; 25(5): 3666-3680, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648387

RESUMEN

A number of new high-performing energetic materials possess explosophoric functionalities, high nitrogen content, and fused heterocyclic blocks. Two representatives of these materials have been synthesized recently, namely, 1,2,9,10-tetranitrodipyrazolo[1,5-d:5',1'-f][1,2,3,4]-tetrazine (1) and 2,9-dinitrobis([1,2,4]triazolo)[1,5-d:5',1'-f][1,2,3,4]tetrazine (2). The thermal stability of these energetic materials bearing the N-N-N = N-N-N fragment and three closely related compounds has been investigated for the first time. The thermal decomposition process of analyzed compounds was complicated by the appearance of the liquid phase, sublimation of the material, and autocatalysis by reaction products. In contrast to the traditional approach to the kinetic modeling based on data from either TGA or DSC, we use both signals' data measured at the same time and perform the joint kinetic analysis using the model-fitting technique to obtain the pertinent kinetic description of the process. Of the analyzed materials, 1 and 2 show the lowest thermal stability in melt with a characteristic rate constant of 2.6 × 10-3 s-1 at 250 °C. The kinetic parameters and calculated detonation performance data were used in the model to describe the mechanical sensitivity. The model output and the experimental friction sensitivity data show a respectable agreement, but more data are required to draw firm conclusions. In general, the provided thermal stability and kinetic data can be used for thermal response and storage modeling of these new N6-type energetic materials. The developed thermokinetic approach, joint model-fitting of several thermal analysis signals, can be applied to other complex thermally induced processes to increase the value and credibility of the kinetic findings.

5.
Phys Chem Chem Phys ; 24(26): 16325-16342, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758846

RESUMEN

A reliable kinetic description of the thermal stability of energetic materials (EM) is very important for safety and storage-related problems. Among other pertinent issues, autocatalysis very often complicates the decomposition kinetics of EM. In the present study, the kinetics and decomposition mechanism of a promising energetic compound, 5-amino-3,4-dinitro-1H-pyrazole (5-ADP) were studied using a set of complementary experimental (e.g., differential scanning calorimetry in the solid state, melt, and solution along with advanced thermokinetic models, accelerating rate calorimetry, and evolved gas analysis) and theoretical techniques (CCSD(T)-F12 and DLPNO-CCSD(T) predictive quantum chemical calculations). The experimental study revealed that the strong acceleration of the decomposition rate of 5-ADP is caused by two factors: the progressive liquefaction of the sample directly observed using in situ optical microscopy, and the autocatalysis by reaction products. For the first time, the processing of the non-isothermal data was performed with a formal Manelis-Dubovitsky kinetic model that accounts for both factors. With the aid of quantum chemical calculations, we have rationalized the autocatalysis present in the formal kinetic models at the molecular level. Theory revealed an unusual primary decomposition channel of 5-ADP, viz., the two subsequent sigmatropic H-shifts in the pyrazole ring followed by the C-NO2 bond scission yielding a pyrazolyl and nitrogen dioxide radicals as simple primary products. Moreover, we found the secondary reactions of the latter radical with the 5-ADP to be kinetically unimportant. On the contrary, the substituted pyrazolyl radical turned out to undergo a facile addition to 5-ADP, followed by a fast exothermic elimination of another ˙NO2 species. We believe the latter process to contribute remarkably to the observed autocatalytic behavior of 5-ADP. Most importantly, the calculations provide detailed mechanistic evidence complementing the thermoanalytical experiment and formal kinetic models.

6.
Phys Chem Chem Phys ; 24(15): 8890-8900, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362490

RESUMEN

The initiation of energetic materials by mechanical stimuli is a critical stage of their functioning, but remains poorly understood. Using atomic force microscopy (AFM) we explore the microscopic initiation behavior of four prototypical energetic materials: 3,4-dinitropyrazole, ε-CL-20, α-PETN and picric acid. Along with the various chemical structures, these energetic compounds cover a range of application types: a promising melt-cast explosive, the most powerful energetic compound in use, a widespread primary explosive, and a well-established nitroaromatic explosive from the early development of energetics. For the softest materials (picric acid and 3,4-dinitropyrazole), the surfaces were found to behave dynamically, quickly rearranging in response to mechanical deformation. The pit created by nanoscale friction stimulation on the surface of 3,4-dinitropyrazole doubled in volume upon aging for half an hour. Over the same time frame, a similar pit on the picric acid surface increased in volume by more than seven-fold. Remarkably, increased humidity was found to reduce the rate of surface rearrangement, potentially offering an origin for the desensitization of energetic materials when wetted. Finally, we identify an inverse correlation between the surface dynamics and mechanical sensitivity of our test energetic compounds. This strongly suggests that surface dynamics influence a material's ability to dissipate excess energy, acting as a buffer towards mechanical initiation.

7.
Phys Chem Chem Phys ; 24(1): 129-141, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34901979

RESUMEN

In this study, we investigated the mechanistic features and kinetics of the thermal decomposition of solids accompanied by liquefaction as exemplified by the thermal dehydration reactions of monosodium L-glutamate monohydrate (MSG-MH). The thermal dehydration of MSG-MH occurs via two mass-loss processes comprising the elimination of crystalline water and intramolecular dehydration. Multistep kinetic behaviors and the liquefaction during both thermal dehydration processes were evidenced by systematic thermoanalytical measurements and in situ microscopic observations. During the thermal dehydration of crystalline water, the liquefaction of the surface product layer occurred midway through the reaction, and the subsequent reaction proceeded with a geometrical constraint, where the solid reactant was covered by a liquid surface layer, affording a solid anhydride. The intramolecular dehydration of the solid anhydride yielded a liquid product on the surface of the reacting particles, and the internal solid reactant dissolved in the liquid product. Subsequently, the intramolecular dehydration proceeded in the liquid phase to afford liquid sodium pyroglutamate. The net kinetic behavior of the physico-geometrical reaction steps in each thermal dehydration process was revealed using kinetic approaches based on cumulative and conjunct kinetic equations. The advanced kinetic approaches employed to reveal the specific kinetic features of the heterogeneous reaction processes in solid-liquid-gas systems are described in this article.

8.
Dalton Trans ; 50(39): 13778-13785, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34505609

RESUMEN

A series of energetic nitrogen-rich salts comprised of a 5-(trinitromethyl)tetrazolate anion and high-nitrogen cations was synthesized by simple and efficient chemical routes from readily available commercial reagents. These energetic materials were fully characterized by IR and multinuclear NMR (1H, 13C, 14N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt containing the 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit decent experimental densities (1.648-1.845 g cm-3) and positive enthalpies of formation (up to 725.5 kJ mol-1) and, as a result, superior detonation performance (detonation velocities 8.2-9.2 km s-1 and detonation pressures 28.5-37.8 GPa), which is comparable to or even exceeding those of commonly used booster explosive PETN. On the other hand, high mechanical sensitivity of several novel 5-(trinitromethyl)tetrazolate salts along with their high combined nitrogen-oxygen content (>81%) and excellent detonation performance render them environmentally friendly alternatives to lead-based primary explosives.

9.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207246

RESUMEN

Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

10.
Phys Chem Chem Phys ; 23(29): 15522-15542, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286759

RESUMEN

The standard state enthalpy of formation and the enthalpy of sublimation are essential thermochemical parameters determining the performance and application prospects of energetic materials (EM). Direct experimental measurements of these properties are complicated by low volatility and high heat release in bomb calorimetry experiments. As a result, the uncertainties in the reported enthalpies of formation for a number of even well-known CHNO-containing compounds might amount up to tens kJ mol-1, while for some novel high-nitrogen molecules they reach even hundreds of kJ mol-1. The present study reports a facile approach to determining the solid-state formation enthalpies comprised of complementary high-level quantum chemical calculations of the gas-phase thermochemistry and advanced thermal analysis techniques yielding sublimation enthalpies. The thermogravimetric procedure for the measurement of sublimation enthalpy was modified by using low external pressures (down to 0.2 Pa). This allows for observing sublimation/vaporization instead of thermal decomposition of the compounds studied. Extensive benchmarking on nonenergetic and energetic compounds reveals the average and maximal absolute errors of the sublimation enthalpies of 3.3 and 11.0 kJ mol-1, respectively. The comparison of the results with those obtained from the widely used Trouton-Williams empirical equation shows that the latter underestimates the sublimation enthalpy up to 140 kJ mol-1. Therefore, we performed a reparametrization of the latter equation with simple chemical descriptors that reduces the mean error down to 30 kJ mol-1. Highly accurate multi-level procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were used to calculate theoretically the gas-phase formation enthalpies. In several cases, the DLPNO-CCSD(T) enthalpies of isodesmic reactions were also employed to obtain the gas-phase thermochemistry for medium-sized important EMs. Combining the obtained thermochemical properties, we determined the solid-state enthalpies of formation for nearly 60 species containing various important explosophoric groups, from common nitroaromatics, nitroethers, and nitramines to novel nitrogen-rich heterocyclic species (e.g., the derivatives of pyrazole, tetrazole, furoxan, etc.). The large-scale benchmarking against the available experimental solid-state enthalpies of formation yielded the maximal inaccuracy of the proposed method of 25 kJ mol-1.

11.
Phys Chem Chem Phys ; 23(20): 11797-11806, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33983360

RESUMEN

Thermal decomposition of solids is often accompanied by autocatalysis, one of the possible causes of which is the formation of a liquid phase. The kinetic model considering the liquefaction of solid reactants under isothermal conditions was proposed by Bawn in the 1950s. The present study reports the application of the Bawn model to the thermolysis of 3,4,5-trinitropyrazole ammonium salt (ATNP) under nonisothermal conditions. The thermal decomposition of ATNP is comprised of low-temperature and high-temperature stages. The low-temperature stage exhibits two distinct exothermic peaks in differential scanning calorimetry (DSC), fitted by two consecutive autocatalytic reactions with a model-fitting kinetic analysis. The liquefaction of the solid reactant during the first reaction is directly observed, giving mechanistic evidence for the Bawn model. We have expressed the Bawn model by a combination of two extended Prout-Tompkins (ePT) equations with the activation energy for the leading liquid-state reaction of Ea = 140.6 ± 0.3 kJ mol-1. The release of ammonia is detected from the beginning, suggesting that the thermal dissociation of ATNP to 3,4,5-trinitropyrazole is an initiation reaction of the thermal decomposition. We proposed ATNP liquefication, leading to the apparent autocatalytic behavior of the first global decomposition reaction, is caused by the eutectic formation between ATNP and 3,4,5-trinitropyrazole, as it was confirmed by DSC analysis of the artificial mixture. The presented approach of the combination of ePT formalism with a Bawn model is generally applicable to a broader range of thermal processes accompanied by liquid phase formation and apparent acceleration.

12.
Angew Chem Int Ed Engl ; 60(21): 11568-11570, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33860577

RESUMEN

In this Correspondence, a question is raised on how confident are the computed detonation performance values. Consideration of the energetic materials in a recent Research Article in this journal and some other newly synthesized promising compounds shows that the variation between the available methods of calculation is surprisingly high.

13.
Molecules ; 25(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322001

RESUMEN

In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4'-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3'-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.


Asunto(s)
Sustancias Explosivas/química , Oxadiazoles/química , Rastreo Diferencial de Calorimetría , Fenómenos Químicos , Técnicas de Química Sintética , Isomerismo , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Nitrocompuestos/síntesis química , Nitrocompuestos/química , Oxadiazoles/síntesis química , Transición de Fase , Termodinámica
14.
J Phys Chem B ; 124(49): 11197-11206, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33241684

RESUMEN

Thermal decomposition of 1,3,5-triazines with azido, trinitroethyl, and nitramino groups, the three important energetic functionalities, has been studied with a range of thermal analysis tools. The involved compounds melt under heating with the following mass loss and heat and gas release in the course of thermal decomposition. Model-fitting kinetic analysis resulted in formal reaction schemes with two general stages. In case of the least energetic 6-azido-2,4-bis(2,2,2-trinitroethylamino)-1,3,5-triazine, the first reaction is a first-order reaction followed by a third-order reaction. Alternatively, for 6-azido-2,4-bis(2,2,2-trinitroethylnitramino)-1,3,5-triazine and 2,4,6-tris(2,2,2-trinitroethylnitramino)-1,3,5-triazine, the first step comprises the autocatalytic reaction. The activation energy for the first decomposition step drops from 141 to 122 kJ mol-1 due to the inductive influence of a ß-nitramino group. The second general reaction for all species obeys the third-order reaction model with activation energies in the range 112-126 kJ mol-1. On the basis of the analysis of the kinetic data and temporal behavior of the evolved gases, a similar primary decomposition channel, the homolytic cleavage of a C-NO2 bond, has been proposed for all investigated substances.

15.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569749

RESUMEN

A supercritical antisolvent process has been applied to obtain the nitrocellulose nanoparticles with an average size of 190 nm from the nitrocellulose fibers of 20 µm in diameter. Compared to the micron-sized powder, nano-nitrocellulose is characterized with a slightly lower decomposition onset, however, the friction sensitivity has been improved substantially along with the burning rate increasing from 3.8 to 4.7 mm·s-1 at 2 MPa. Also, the proposed approach allows the production of stable nitrocellulose composites. Thus, the addition of 1 wt.% carbon nanotubes further improves the sensitivity of the nano-nitrocellulose up to the friction-insensitive level. Moreover, the simultaneous introduction of carbon nanotubes and nanosized iron oxide catalyzes the combustion process evidenced by a high-speed filming and resulting in the 20% burning rate increasing at 12 MPa. The presented approach to the processing of energetic nanomaterials based on the supercritical fluid technology opens the way to the production of nitrocellulose-based nanopowders with improved performance.

16.
Molecules ; 24(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234317

RESUMEN

Thermal decomposition of solids often includes simultaneous occurrence of the overlapping processes with unequal contributions in a specific physical quantity variation during the overall reaction (e.g., the opposite effects of decomposition and evaporation on the caloric signal). Kinetic analysis for such reactions is not a straightforward, while the applicability of common kinetic calculation methods to the particular complex processes has to be justified. This study focused on the critical analysis of the available kinetic calculation methods applied to the mathematically simulated thermogravimetry (TG) and differential scanning calorimetry (DSC) data. Comparing the calculated kinetic parameters with true kinetic parameters (used to simulate the thermoanalytical curves), some caveats in the application of the Kissinger, isoconversional Friedman, Vyazovkin and Flynn-Wall-Ozawa methods, mathematical and kinetic deconvolution approaches and formal kinetic description were highlighted. The model-fitting approach using simultaneously TG and DSC data was found to be the most useful for the complex processes assumed in the study.


Asunto(s)
Rastreo Diferencial de Calorimetría/estadística & datos numéricos , Termogravimetría/métodos , Rastreo Diferencial de Calorimetría/métodos , Cinética
17.
Chemistry ; 25(16): 4225-4233, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644611

RESUMEN

A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1 H, 13 C, 14 N, 15 N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57-1.71 g cm-3 ), very high enthalpies of formation (818-1363 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.54-8.26 kms-1 and detonation pressures 23.4-29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5-2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0-70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.

18.
Phys Chem Chem Phys ; 20(46): 29285-29298, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30430162

RESUMEN

The thermal stability of energetic materials, being of the utmost importance for safety issues, is often considered in terms of kinetics, e.g., the Arrhenius parameters of the decomposition rate constant. The latter, in turn, are commonly determined using conventional thermoanalytical procedures with the use of simple Kissinger or Ozawa methods for kinetic data processing. However, thermal decomposition of energetic materials typically occurs via numerous exo- and endothermal processes including fast parallel reactions, phase transitions, autocatalysis, etc. This leads to numerous drawbacks of simple approaches. In this paper, we proposed a new methodology for characterization of the thermochemistry and thermal stability of melt-cast energetic materials, which is comprised of a complementary set of experimental and theoretical techniques in conjunction with a suitable kinetic model. With the aid of the proposed methodology, we studied in detail a novel green oxidizer, tetranitroacetimidic acid (TNAA). The experimental mass loss kinetics in the melt was perfectly fitted with a model comprised of zero-order reaction (sublimation or evaporation) and first-order thermal decomposition of TNAA with the effective Arrhenius parameters Ea = 41.0 ± 0.2 kcal mol-1 and log(A/s-1) = 20.2 ± 0.1. We rationalized the experimental findings on the basis of highly accurate CCSD(T)-F12 quantum chemical calculations. Computations predict that thermolysis of TNAA involves an intricate interplay of multiple decomposition channels of the three tautomers, which are equilibrated via either monomolecular reactions or concerted double hydrogen atom transfer in the H-bonded dimers; the calculated Arrhenius parameters of the effective rate constant coincide well with experiment. Most importantly, calculations provide detailed mechanistic evidence missing in the thermoanalytical experiment and explain formation of the experimentally observed primary products N2O and NO2. Along with the kinetics and mechanism of decomposition, the proposed approach yields accurate thermochemistry and phase change data of TNAA.

19.
J Phys Chem A ; 122(15): 3939-3949, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29584435

RESUMEN

Thermochemistry, kinetics, and mechanism of thermal decomposition of 1,5-diaminotetrazole (DAT), a widely used "building block" of nitrogen-rich energetic compounds, were studied theoretically at a high and reliable level of theory (viz., using the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ procedure). Quantum chemical calculations provided detailed insight into the thermolysis mechanism of DAT missing in the existing literature. Moreover, several contradictory assumptions on the mechanism and key intermediates of thermolysis were resolved. The unimolecular primary decomposition reactions of the seven isomers of DAT were studied in the gas phase and in the melt using a simplified model of the latter. The two-step reaction of N2 elimination from the diamino tautomer was found to be the primary decomposition process of DAT in the gas phase and melt. The effective Arrhenius parameters of this process were calculated to be E a = 43.4 kcal mol-1 and log( A/s-1) = 15.2 in a good agreement with the experimental values. Contrary to the existing literature data, all other decomposition channels of DAT isomers turned out to be kinetically unimportant. Apart from this, a new primary decomposition channel yielding N2, cyanamide, and 1,1-diazene was found for some H-bonded dimers of DAT. We also determined a reliable and mutually consistent set of thermochemical values for DAT (Δ f H solid0 = 74.5 ± 1.5 kcal·mol-1) by combining theoretically calculated (W1 multilevel procedure along with an isodesmic reaction) gas phase enthalpy of formation (Δ f H gas0 = 100.7 ± 1.0 kcal·mol-1) and experimentally measured sublimation enthalpy (Δ sub H0 = 26.2 ± 0.5 kcal·mol-1).

20.
Chem Asian J ; 13(9): 1165-1172, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29457973

RESUMEN

High-nitrogen-content compounds have attracted great scientific interest and technological importance because of their unique energy content, and they find diverse applications in many fields of science and technology. Understanding of structure-property relationship trends and how to modify them is of paramount importance for their further improvement. Herein, the installation of oxygen-rich modules, C(NO2 )3 , C(NO2 )2 F, or C(NO2 )2 NF2 , into an endothermic framework, that is, the combination of a nitropyrazole unit and tetrazole ring, is used as a way to design novel energetic compounds. Density, oxygen balance, and enthalpy of formation are enhanced by the presence of these oxygen-containing units. The structures of all compounds were confirmed by XRD. For crystal packing analysis, it is proposed to use new criterion, ΔOED , that can serve as a measure of the tightness of molecular packing upon crystal formation. Overall, the materials show promising detonation and propulsion parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...