Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150375

RESUMEN

Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host-bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition.


Asunto(s)
Drosophila , Levaduras , Animales , Larva , Filogenia , Levaduras/metabolismo , Bacterias/genética , Fermentación
2.
Genes Cells ; 25(9): 626-636, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32594638

RESUMEN

How nutrition impacts growth, reproduction and longevity is complex because relationships between these life events are difficult to disentangle. As a first step in sorting out these processes, we carried out a comparative analysis of related species of Drosophila with distinct feeding habits. In particular, we examined life spans and egg laying of two generalists and three specialists on diets with distinct protein-to-carbohydrate ratios. In contrast to the generalist D. melanogaster, adult males of two specialists, D. sechellia and D. elegans, lived longer on a protein-rich diet. These results and our previous studies collectively show that the diet to which larvae of each specialist species have adapted ensures a longer life span of adult males of that same species. We also found a species-specific sexual dimorphism of life span in the above two specialists regardless of the diets, which was in sharp contrast to D. melanogaster. In D. melanogaster, males lived longer than females, whereas females of D. sechellia and D. elegans were longer-lived than males, and those specialist females were exceedingly low in egg production, relative to the other species. We discuss our findings from perspectives of mechanisms, including a possible contribution of egg production to life span.


Asunto(s)
Drosophila melanogaster/fisiología , Longevidad , Animales , Drosophila/fisiología , Femenino , Masculino , Nutrientes , Óvulo , Reproducción , Caracteres Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...