Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(1): 541-552, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38133833

RESUMEN

Recent studies have revealed that tropolone-amide aryl C-C(O) rotational barriers are dramatically higher than those of analogous benzamide-based systems, and as a result, they have an increased likelihood of displaying high configurational stability. Studies on other tropolone-based chiral axes are important to assess the generality of this phenomenon. Herein, we describe a series of studies on the rotational barriers of tropolone-ketone, tropolone-ester, and tropolone-aldehyde chiral axes. These studies are complemented with computational modeling of the dynamics of these and analogous benzenoid variants to illuminate the impact that tropolone may have on aryl-C(O) configurational stability.

2.
Antiviral Res ; 220: 105762, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37996012

RESUMEN

Tropolone compounds can inhibit hepatitis B virus (HBV) replication at sub-micromolar levels and are synergistic upon co-treatment with nucleos(t)ide analog drugs. However, only a few compounds within this chemotype have been screened for their pharmacological properties. Here, we chose 36 structurally diverse tropolones from six subclasses to characterize their in vitro pharmacological parameters. All compounds were more soluble in pHs that reflect the gastrointestinal tract (pH 5 and 6.5) than plasma (pH 7.4). Those compounds that had solubility limits >100 µM were tested in a passive permeability assay, and there was no general trend in the compounds' passive permeability at any pH. Twenty-nine compounds with the best absorption parameters were tested in HEK293 cells to assess potential cytotoxicity; measured toxicities were similar to those in the hepatic HepDES19 cells used for screening (R2 = 0.55). Sixteen representative compounds were tested against five major CYP450 isoforms and there was no substantial inhibition by any compound against any of the enzymes tested (<50%). The t1/2 values of 15 compounds were determined in the microsome stability assay and 12 compounds were evaluated in plasma protein binding assays to assess factors affecting their rate of clearance. All compounds with detectable analyte peaks had t1/2 > 30 min, and while 4 of 12 had statistically significant decreased potency in conditions with increased albumin concentrations, only one compound's potency was biologically significant. These data indicate that the tropolones have pharmacological characteristics that reflect approved drugs and inform future structure activity relationships during drug design.


Asunto(s)
Virus de la Hepatitis B , Tropolona , Humanos , Tropolona/farmacología , Células HEK293 , Relación Estructura-Actividad , Diseño de Fármacos , Antivirales/farmacología
3.
Org Biomol Chem ; 21(39): 7900-7907, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750360

RESUMEN

Fluorescent small-molecules capable of altering their profiles in response to environmental changes are exceptionally valuable tool compounds throughout the scientific community. The following manuscriipt describes a new class of fluorescent small molecules based on lactam-fused tropolones that are responsive to a dynamic range of environmental changes. These molecules can be easily obtained through a rapid annulation procedure between appropriately functionalized tropolones and primary amines, which is often complete within minutes at room temperature. Molecules generated through this approach have been identified with fluoresence emission across the visible light spectra, and can be tuned based on either the tropolone or amine component. They are also highly responsive to changes in solvent, pH, and certain divalent metal ions. Tropolone-fused lactams thus represent a new class of tunable fluorescent small molecules that could find value throughout the scientific community.

4.
RSC Adv ; 13(13): 8743-8752, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936842

RESUMEN

α-Hydroxytropolones (αHTs) have potent antiviral activity against herpes simplex virus-1 and -2 (HSV-1 and HSV-2) in cell culture, including against acyclovir-resistant mutants, and as a result have the potential to be developed as antiviral drugs targeting these viruses. We recently described a convenient final-step amidation strategy to their synthesis, and this was used to generate 57 amide-substituted αHTs that were tested against hepatitis B virus. The following manuscript describes the evaluation of this library against HSV-1, as well as a subset against HSV-2. The structure-function analysis obtained from these studies demonstrates the importance of lipophilicity and rigidity to αHT-based anti-HSV potency, consistent with our prior work on smaller libraries. We used this information to synthesize and test a targeted library of 4 additional amide-appended αHTs. The most potent of this new series had a 50% effective concentration (EC50) for viral inhibition of 72 nM, on par with the most potent αHT antivirals we have found to date. Given the ease of synthesis of amide-appended αHTs, this new class of antiviral compounds and the chemistry to make them should be highly valuable in future anti-HSV drug development.

5.
Tetrahedron ; 1302023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36777111

RESUMEN

Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.

6.
PLoS One ; 17(9): e0274266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112605

RESUMEN

Rift Valley fever virus (RVFV) is a veterinary and human pathogen and is an agent of bioterrorism concern. Currently, RVFV treatment is limited to supportive care, so new drugs to control RVFV infection are urgently needed. RVFV is a member of the order Bunyavirales, whose replication depends on the enzymatic activity of the viral L protein. Screening for RVFV inhibitors among compounds with divalent cation-coordinating motifs similar to known viral nuclease inhibitors identified 47 novel RVFV inhibitors with selective indexes from 1.1-103 and 50% effective concentrations of 1.2-56 µM in Vero cells, primarily α-Hydroxytropolones and N-Hydroxypyridinediones. Inhibitor activity and selective index was validated in the human cell line A549. To evaluate specificity, select compounds were tested against a second Bunyavirus, La Crosse Virus (LACV), and the flavivirus Zika (ZIKV). These data indicate that the α-Hydroxytropolone and N-Hydroxypyridinedione chemotypes should be investigated in the future to determine their mechanism(s) of action allowing further development as therapeutics for RVFV and LACV, and these chemotypes should be evaluated for activity against related pathogens, including Hantaan virus, severe fever with thrombocytopenia syndrome virus, Crimean-Congo hemorrhagic fever virus.


Asunto(s)
Virus La Crosse , Virus de la Fiebre del Valle del Rift , Infección por el Virus Zika , Virus Zika , Animales , Cationes Bivalentes , Chlorocebus aethiops , Humanos , Células Vero
7.
J Org Chem ; 87(7): 4499-4507, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007070

RESUMEN

Herein, we describe the formation of tropolones through the autoxidation of Büchner reaction-derived cycloheptatrienes. The reaction is exceptionally simple procedurally, as it involves blowing a stream of compressed air over the cycloheptatriene, and the products can be obtained without any need for chromatography. The chemistry works specifically on dioxolane-fused systems or close variants, and substitution patterns are also important. A radical-based mechanistic hypothesis is put forward to explain these results. Finally, we demonstrate the utility of the overall process in the synthesis of amide-appended tropolones and an isomer of stipitatic acid.


Asunto(s)
Dioxoles , Tropolona , Tropolona/química
8.
Chemistry ; 28(10): e202104112, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34984767

RESUMEN

Polyoxygenated tropolones possess a broad range of biological activity, and as a result are promising lead structures or fragments for drug development. However, structure-function studies and subsequent optimization have been challenging, in part due to the limited number of readily available tropolones and the obstacles to their synthesis. Oxidopyrylium [5+2] cycloaddition can effectively generate a diverse array of seven-membered ring carbocycles, and as a result can provide a highly general strategy for tropolone synthesis. Here, we describe the use of 3-hydroxy-4-pyrone-based oxidopyrylium cycloaddition chemistry in the synthesis of functionalized 3,7-dimethoxytropolones, 3,7-dihydroxytropolones, and isomeric 3-hydroxy-7-methoxytropolones through complementary benzyl alcohol-incorporating procedures. The antiviral activity of these molecules against herpes simplex virus-1 and hepatitis B virus is also described, highlighting the value of this approach and providing new structure-function insights relevant to their antiviral activity.


Asunto(s)
Herpesvirus Humano 1 , Tropolona , Antivirales/farmacología , Reacción de Cicloadición , Virus de la Hepatitis B , Tropolona/química , Tropolona/farmacología
9.
Antimicrob Agents Chemother ; 66(1): e0161721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694883

RESUMEN

The α-hydroxytropolones (αHTs) are troponoid inhibitors of hepatitis B virus (HBV) replication that can target HBV RNase H with submicromolar efficacies. αHTs and related troponoids (tropones and tropolones) can be cytotoxic in cell lines as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays that assess mitochondrial function. Previous studies suggest that tropolones induce cytotoxicity through inhibition of mitochondrial respiration. Therefore, we screened 35 diverse troponoids for effects on mitochondrial function, mitochondrial/nuclear genome ratios, cytotoxicity, and reactive oxygen species (ROS) production. Troponoids as a class did not inhibit respiration or glycolysis, although the α-ketotropolone subclass interfered with these processes. The troponoids had no impact on the mitochondrial DNA/nuclear DNA ratio after 3 days of compound exposure. The patterns of troponoid-induced cytotoxicity among three hepatic cell lines were similar for all compounds, but three potent HBV RNase H inhibitors were not cytotoxic in primary human hepatocytes. Tropolones and αHTs increased ROS production in cells at cytotoxic concentrations but had no effect at lower concentrations that efficiently inhibit HBV replication. Troponoid-mediated cytotoxicity was significantly decreased upon the addition of the ROS scavenger N-acetylcysteine. These studies show that troponoids can increase ROS production at high concentrations within cell lines, leading to cytotoxicity, but are not cytotoxic in primary hepatocytes. Future development of αHTs as potential therapeutics against HBV may need to mitigate ROS production by altering compound design and/or by coadministering ROS antagonists to ameliorate increased ROS levels.


Asunto(s)
Virus de la Hepatitis B , Replicación Viral , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno , Ribonucleasa H/genética , Tropolona/farmacología
10.
Nucleic Acids Res ; 49(22): 13179-13193, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871450

RESUMEN

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.


Asunto(s)
Herpesvirus Humano 8/metabolismo , Nucleótidos/metabolismo , Poli A/metabolismo , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Poli A/química , Poli A/genética , Estabilidad del ARN/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Viral/química , ARN Viral/genética , Sarcoma de Kaposi/virología , Bibliotecas de Moléculas Pequeñas/química
11.
J Org Chem ; 86(5): 3826-3835, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33586990

RESUMEN

Oxidopyrylium [5 + 2] cycloaddition reactions are powerful strategies for constructing complex bicyclic architectures. However, intermolecular cycloadditions of oxidopyrylium ylides are limited due to competing dimerization processes; consequently, high equivalents of dipolarophiles are often used to help intercept the ylide prior to dimerization. Recent studies by our lab have revealed that oxidopyrylium dimers derived from 3-hydroxy-4-pyrones are capable of reverting back to ylides in situ and as a result can be used as clean oxidopyrylium ylide sources. The following manuscript investigates intermolecular cycloaddition reactions between 3-hydroxy-4-pyrone-derived oxidopyrylium dimers and stoichiometrically equivalent ratios of alkyne dipolarophiles under thermal conditions. With certain reactive alkynes, pure cycloadducts can be obtained following a simple evaporation of the solvent, which is a benefit of the completely atom-economical reaction conditions. However, when less reactive alkynes are used the yields suffer due to a competing dimer rearrangement. Finally, when reactive-yet-volatile alkynes are used, such as methyl propiolate, competing 2:1 ylide/alkyne cycloadducts are observed. Intriguingly, these complex cycloadducts, which can be obtained in good yields from the pure cycloadducts, form with high regio- and stereoselectivities; however, both the regio-and stereoselectivities differ remarkably based on the source of the oxidopyrylium ylide.


Asunto(s)
Cromonas , Pironas , Reacción de Cicloadición , Estereoisomerismo
12.
Molecules ; 25(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992516

RESUMEN

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Tropolona/análogos & derivados , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Desaminasa APOBEC-3G/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Tropolona/farmacología
13.
Antiviral Res ; 177: 104777, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32217151

RESUMEN

The Hepatitis B Virus (HBV) ribonuclease H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54 µM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quantitative enzymatic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human ribonuclease H1, with 50% inhibitory concentrations of 5.1 to >1,000 µM. The αHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram - bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A molecular model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide αHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Tropolona/farmacología , Replicación Viral/efectos de los fármacos , Amidas/química , Antivirales/química , Línea Celular , Descubrimiento de Drogas , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/fisiología , Humanos , Modelos Moleculares , Tropolona/síntesis química , Tropolona/química
14.
Chem Commun (Camb) ; 56(21): 3203-3205, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32068199

RESUMEN

Oxidopyrylium cycloadducts derived from maltol and aryl acetylenes undergo acid-mediated rearrangements to generate aryl-substituted 2-methoxyphenol (guaiacol) derivatives. Specifically, the cycloadducts react with boron trichloride to form 2-methoxy-5-arylphenol molecules, and with methane sulfonate to form 2-methoxy-4-aryl-6-methylphenol molecules.

15.
Res Vet Sci ; 129: 99-102, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31954321

RESUMEN

The emergence of human alphaherpesvirus strains (i.e. HHV-1 and -2) resistant to commonly used antiviral drugs has prompted the research for alternative, biologically active anti-herpetic agents. Natural-product and synthetic α-hydroxytropolones (αHTs) have been identified as lead therapeutic agents for a number of infections, including HHV-1 and -2, and several veterinary herpesviruses, i.e. bovine alphaherpesvirus 1 (BoHV-1), equine alphaherpesvirus 1 (EHV-1) and feline alphaherpesvirus 1 (FHV-1). In the present study we evaluated the activity in vitro of two natural and two synthetic α-hydroxytropolones (αHTs) against Caprine alphaherpesvirus 1 (CpHV-1) which is regarded as a useful homologous animal model for the study of HSV-2 infection, chiefly for the assessment of antiviral drugs in in vivo studies. AlphaHTs were able to decrease significantly CpHV-1 viral titres up to 4.25 log10 TCID50/50 µl and suppressed extensively CpHV-1 nucleic acids up to 8.71 log10 viral DNA copy number/10 µl. This study demonstrated the efficacy of αHTs against CpHV-1 in vitro, adding to their activity observed against the human and animal alphaherpesviruses in vitro. The activity of αHTs against CpHV-1 appeared similar but not identical to the patterns of activity observed against other alphaherpesviruses, suggesting virus-related variability in terms of response to specific αHT molecules. These findings open several perspectives in terms of future studies using the CpHV-1 homologous animal model, for the development of therapeutic tools against herpesviruses.


Asunto(s)
Alphaherpesvirinae/efectos de los fármacos , Antivirales/farmacología , Cabras/virología , Tropolona/farmacología , Animales , ADN Viral/genética
16.
J Org Chem ; 84(22): 14670-14678, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31603325

RESUMEN

Oxidopyrylium ylides are useful intermediates in synthetic organic chemistry because of their capability of forming structurally complex cycloadducts. They can also self-dimerize via [5 + 3] cycloaddition, which is an oft-reported side reaction that can negatively impact [5 + 2] cycloadduct yields and efficiency. In select instances, these dimers can be synthesized and used as the source of oxidopyrylium ylide, although the generality of this process remains unclear. Thus, how the substitution pattern governs both dimerization and cycloaddition reactions is of fundamental interest to probe factors to regulate them. The following manuscript details our findings that maltol-derived oxidopyrylium ylides (i.e., with ortho methyl substitution relative to oxide) can be trapped prior to dimerization more efficiently than the regioisomeric allomaltol-derived ylide (i.e., with a para methyl substitution relative to oxide). Density functional theory studies provide evidence in support of a sterically (kinetically) controlled mechanism, whereby gauche interactions between appendages of the approaching maltol-derived ylides are privileged by higher barriers for dimerization and thus are readily intercepted by dipolarophiles via [5 + 2] cycloadditions.


Asunto(s)
Compuestos Bicíclicos con Puentes/síntesis química , Pironas/química , Tropolona/síntesis química , Compuestos Bicíclicos con Puentes/química , Reacción de Cicloadición , Dimerización , Cinética , Estructura Molecular , Tropolona/química
17.
Medchemcomm ; 10(7): 1173-1176, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391890

RESUMEN

We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.

18.
Org Lett ; 21(7): 2412-2415, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30869521

RESUMEN

Configurationally stable, atropisomeric motifs are an important structural element in a number of molecules, including chiral ligands, catalysts, and molecular devices. Thus, understanding features that stabilize chiral axes is of fundamental interest throughout the chemical sciences. The following details the high rotational barriers about the Ar-C(O) bond of tropone amides, which significantly exceed those of analogous benzamides. These studies are supported by both experimental and computational rotational barrier measurements. We also report the resolution of an axially chiral α-hydroxytropolone amide into its individual atropisomers, and demonstrate its configurational stability at physiological pH and temperatures over 24 h.


Asunto(s)
Amidas/síntesis química , Tropolona/análogos & derivados , Amidas/química , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Tropolona/síntesis química , Tropolona/química
19.
ACS Infect Dis ; 5(5): 655-658, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29565562

RESUMEN

Hepatitis B virus (HBV) chronically infects >250 million people and kills nearly a million annually, and current antivirals cannot clear the infection or adequately suppress disease. The virus replicates by reverse transcription, and the dominant antiviral drugs are nucleos(t)ide analogs that target the viral reverse transcriptase. We are developing antivirals targeting the other essential viral enzymatic activity, the ribonuclease H (RNaseH). HBV RNaseH inhibitors with efficacies in the low micromolar to nanomolar range against viral replication in culture have been identified in the α-hydroxytropolone and hydroxyimide chemotypes. Here, we review the promise of RNaseH inhibitors, their current structure-activity relationships, and challenges to optimizing the inhibitors into leads for clinical assessment.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/enzimología , Ribonucleasa H/antagonistas & inhibidores , Antivirales/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
20.
RSC Adv ; 9(59): 34227-34234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33042521

RESUMEN

Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...