Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 38(10): 2310-2331, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37318321

RESUMEN

Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Dioxinas , MicroARNs , Dibenzodioxinas Policloradas , Ratones , Femenino , Masculino , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Dioxinas/farmacología , Dibenzodioxinas Policloradas/toxicidad , Hígado
2.
Prog Lipid Res ; 91: 101233, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156444

RESUMEN

Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.


Asunto(s)
Gotas Lipídicas , Fosfolípidos , Animales , Gotas Lipídicas/metabolismo , Fosfolípidos/metabolismo , Ácidos Grasos/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Mamíferos
3.
Prog Lipid Res ; 91: 101237, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37236370

RESUMEN

The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.


Asunto(s)
Archaea , Lípidos de la Membrana , Archaea/química , Archaea/metabolismo , Lípidos de la Membrana/metabolismo , Bacterias/metabolismo , Terpenos/metabolismo , Éteres/química , Éteres/metabolismo
4.
Ann Bot ; 131(3): 387-409, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36656070

RESUMEN

BACKGROUND: Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE: This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS: It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.


Asunto(s)
Proteínas de Plantas , Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Lípidos
5.
Front Reprod Health ; 4: 1009090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339774

RESUMEN

The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.

6.
Plant Cell Rep ; 41(4): 853-871, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984531

RESUMEN

KEY MESSAGE: Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.


Asunto(s)
Antineoplásicos , Taxus , Regulación de la Expresión Génica de las Plantas , Gotas Lipídicas/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacología , Taxus/genética , Taxus/metabolismo
7.
CABI Agric Biosci ; 2(1): 39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34661165

RESUMEN

BACKGROUND: Oil palm, Elaeis guineensis, is by far the most important global oil crop, supplying about 40% of all traded vegetable oil. Palm oils are key dietary components consumed daily by over three billion people, mostly in Asia, and also have a wide range of important non-food uses including in cleansing and sanitizing products. MAIN BODY: Oil palm is a perennial crop with a > 25-year life cycle and an exceptionally low land footprint compared to annual oilseed crops. Oil palm crops globally produce an annual 81 million tonnes (Mt) of oil from about 19 million hectares (Mha). In contrast, the second and third largest vegetable oil crops, soybean and rapeseed, yield a combined 84 Mt oil but occupy over 163 Mha of increasingly scarce arable land. The oil palm crop system faces many challenges in the 2020s. These include increasing incidence of new and existing pests/diseases and a general lack of climatic resilience, especially relating to elevated temperatures and increasingly erratic rainfall patterns, plus downstream issues relating to supply chains and consumer sentiment. This review surveys the oil palm sector in the 2020s and beyond, its major challenges and options for future progress. CONCLUSIONS: Oil palm crop production faces many future challenges, including emerging threats from climate change and pests and diseases. The inevitability of climate change requires more effective international collaboration for its reduction. New breeding and management approaches are providing the promise of improvements, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance, and greater climatic resilience.

8.
Environ Pollut ; 281: 116966, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33799204

RESUMEN

Dioxins are highly injurious environmental pollutants with proven toxicological effects on both animals and humans, but to date their effects on plants still need to be studied in detail. We identified a dioxin-inducible caleosin/peroxygenase isoform, PdPXG4, that is mostly expressed in leaves of date palm seedlings and exhibits a specific reductase activity towards the 13-hydroperoxide of C18:2 and C18:3 (HpODE and HpOTrE, respectively). After exposure to TCDD, lipid droplets (LDs) isolated from TCDD-exposed leaves were about 6.5-15.7-fold more active in metabolizing 13-HpOTrE compared with those isolated from non-exposed leaves. A characteristic spectrum of leaf dioxin-responsive oxylipins (LDROXYL) was detected in dioxin-exposed seedlings. Of particular importance, a group of these oxylipins, referred to as Class I, comprising six congeners of hydroxides fatty acids derived from C18:2 and C18:3, was exclusively found in leaves after exposure to TCDD. The TCDD-induced oxylipin pattern was confirmed in vitro using terbufos, a typical inhibitor towards the PdPXG4 peroxygenase activity. Of particular interest, the response of terbufos-pretreated protoplasts to TCDD was drastically reduced. Together, these findings suggest that PdPXG4 is implicated in the establishment of a dioxin-specific oxylipin signature in date palm leaves soon after their exposure to these pollutants.


Asunto(s)
Dioxinas , Phoeniceae , Animales , Proteínas de Unión al Calcio , Dioxinas/toxicidad , Humanos , Gotas Lipídicas , Oxigenasas de Función Mixta , Proteínas de Plantas
9.
Toxicol Rep ; 7: 795-804, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642446

RESUMEN

The highly potent carcinogen, Aflatoxin B1, induces liver cancer in many animals including humans but some mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB1. Hepatic lipid droplets (LDs) ultimately impact the liver functions but their potential role in AFB1 detoxification has not been addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after exposure to 44 (low dose) or 663 (high dose) µg AFB1/kg of body weight. After 7 days, the liver of AFB1-dosed mice did not accumulate any detectable AFB1 or its metabolites and this was associated with a net increase in gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that hepatic LDs catalyze the in vitro activation of AFB1 into AFB1-exo-8,9-epoxide and subsequent hydrolysis of this epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and detoxifying of aflatoxins.

10.
Plant Cell Physiol ; 61(4): 735-747, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883014

RESUMEN

Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.


Asunto(s)
Inhibidor de la Unión a Diazepam/genética , Regulación de la Expresión Génica de las Plantas , Aceite de Palma/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arecaceae/genética , Arecaceae/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Endospermo/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Transcriptoma
11.
BMC Res Notes ; 12(1): 229, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992056

RESUMEN

OBJECTIVE: The addition of residual oils such as palm fibre oil (PFO) and sludge palm oil (SPO) to crude palm oil (CPO) can be problematic within supply chains. PFO is thought to aggravate the accumulation of monochloropropanediols (MCPDs) in CPO, whilst SPO is an acidic by-product of CPO milling and is not fit for human consumption. Traditional targeted techniques to detect such additives are costly, time-consuming and require highly trained operators. Therefore, we seek to assess the use of gas chromatography-ion mobility spectrometry (GC-IMS) for rapid, cost-effective screening of CPO for the presence of characteristic PFO and SPO volatile organic compound (VOC) fingerprints. RESULTS: Lab-pressed CPO and commercial dispatch tank (DT) CPO were spiked with PFO and SPO, respectively. Both additives were detectable at concentrations of 1% and 10% (w/w) in spiked lab-pressed CPO, via seven PFO-associated VOCs and 21 SPO-associated VOCs. DT controls could not be distinguished from PFO-spiked DT CPO, suggesting these samples may have already contained low levels of PFO. DT controls were free of SPO. SPO was detected in all SPO-spiked dispatch tank samples by all 21 of the previously distinguished VOCs and had a significant fingerprint consisting of four spectral regions.


Asunto(s)
Mezclas Complejas/química , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Aceite de Palma/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Análisis de los Alimentos/instrumentación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Movilidad Iónica , Compuestos Orgánicos Volátiles/clasificación
12.
BMC Genomics ; 19(1): 976, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30593269

RESUMEN

BACKGROUND: Caleosin/peroxygenases, CLO/PXG, (designated PF05042 in Pfam) are a group of genes/proteins with anomalous distributions in eukaryotic taxa. We have previously characterised CLO/PXGs in the Viridiplantae. The aim of this study was to investigate the evolution and functions of the CLO/PXGs in the Fungi and other non-plant clades and to elucidate the overall origin of this gene family. RESULTS: CLO/PXG-like genes are distributed across the full range of fungal groups from the basal clades, Cryptomycota and Microsporidia, to the largest and most complex Dikarya species. However, the genes were only present in 243 out of 844 analysed fungal genomes. CLO/PXG-like genes have been retained in many pathogenic or parasitic fungi that have undergone considerable genomic and structural simplification, indicating that they have important functions in these species. Structural and functional analyses demonstrate that CLO/PXGs are multifunctional proteins closely related to similar proteins found in all major taxa of the Chlorophyte Division of the Viridiplantae. Transcriptome and physiological data show that fungal CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression and are upregulated in response to a range of biotic and abiotic stresses as well as participating in key metabolic and developmental processes such as lipid metabolism, signalling, reproduction and pathogenesis. Biochemical data also reveal that the Aspergillus flavus CLO/PXG has specific functions in sporulation and aflatoxin production as well as playing roles in lipid droplet function. CONCLUSIONS: In contrast to plants, CLO/PXGs only occur in about 30% of sequenced fungal genomes but are present in all major taxa. Fungal CLO/PXGs have similar but not identical roles to those in plants, including stress-related oxylipin signalling, lipid metabolism, reproduction and pathogenesis. While the presence of CLO/PXG orthologs in all plant genomes sequenced to date would suggest that they have core housekeeping functions in plants, the selective loss of CLO/PXGs in many fungal genomes suggests more restricted functions in fungi as accessory genes useful in particular environments or niches. We suggest an ancient origin of CLO/PXG-like genes in the 'last eukaryotic common ancestor' (LECA) and their subsequent loss in ancestors of the Metazoa, after the latter had diverged from the ancestral fungal lineage.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Hongos/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Evolución Molecular , Hongos/clasificación , Genoma Fúngico , Genoma de Planta , Genómica , Filogenia , Viridiplantae/genética
13.
Sci Rep ; 8(1): 13181, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181584

RESUMEN

Dioxins are highly hazardous pollutants that have well characterized impacts on both animal and human health. However, the biological effects of dioxins on plants have yet to be described in detail. Here we describe a dioxin-inducible caleosin/peroxygenase isoform, PdPXG2, that is mainly expressed in the apical zone of date palm roots and specifically reduces 9-hydroperoxide fatty acids. A characteristic spectrum of 18 dioxin-responsive oxylipin (DROXYL) congeners was also detected in date palm roots after exposure to dioxin. Of particular interest, six oxylipins, mostly hydroxy fatty acids, were exclusively formed in response to TCDD. The DROXYL signature was evaluated in planta and validated in vitro using a specific inhibitor of PdPXG2 in a root-protoplast system. Comparative analysis of root suberin showed that levels of certain monomers, especially the mono-epoxides and tri-hydroxides of C16:3 and C18:3, were significantly increased after exposure to TCDD. Specific inhibition of PdPXG2 activity revealed a positive linear relationship between deposition of suberin in roots and their permeability to TCDD. The results highlight the involvement of this peroxygenase in the plant response to dioxin and suggest the use of dioxin-responsive oxylipin signatures as biomarkers for plant exposure to this important class of xenobiotic contaminants.


Asunto(s)
Aldehído Oxidorreductasas/genética , Dioxinas/metabolismo , Contaminantes Ambientales/metabolismo , Oxigenasas de Función Mixta/genética , Oxilipinas/metabolismo , Phoeniceae/efectos de los fármacos , Proteínas de Plantas/genética , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Phoeniceae/genética , Phoeniceae/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
14.
Plant Sci ; 275: 84-96, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30107884

RESUMEN

The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.


Asunto(s)
Arecaceae/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Arecaceae/enzimología , Arecaceae/genética , Simulación por Computador , Diacilglicerol O-Acetiltransferasa/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Filogenia , Análisis de Secuencia de ADN
15.
PLoS One ; 13(5): e0196669, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771926

RESUMEN

Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these genes are present in the vast majority of Viridiplantae taxa for which sequence data are available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green algae but are absent from the small number of sequenced Prasinophyceaen genomes. CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sister clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in all of the >300 sequenced Embryophyte genomes, where some species contain as many as 10-12 genes that have arisen via selective gene duplication. Angiosperm genomes harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L (low), where H-forms contain an additional C-terminal motif of about 30-50 residues that is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally both) of these isoforms per genome. Transcriptome and biochemical data show that CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer membranes. Many of the analysed isoforms also have peroxygenase activity and are involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viridiplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had already diverged from other Archaeplastidal groups such as the Rhodophyta and Glaucophyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the Embryophyte proteins have a much wider spectrum of roles and may have been instrumental in the colonisation of terrestrial habitats and the subsequent diversification as the major land flora.


Asunto(s)
Proteínas de Unión al Calcio/genética , Genoma/genética , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Viridiplantae/genética , Secuencia de Aminoácidos , Chlorophyta/genética , Biología Computacional/métodos , Evolución Molecular , Genómica/métodos , Oxilipinas/metabolismo , Filogenia , Estrés Fisiológico/genética , Transcriptoma/genética
16.
PLoS One ; 13(4): e0194792, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29672525

RESUMEN

Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.


Asunto(s)
Arecaceae/genética , Resistencia a la Enfermedad/genética , Ácidos Grasos/biosíntesis , Perfilación de la Expresión Génica , Genómica , Enfermedades de las Plantas/genética , Transcriptoma , Biología Computacional/métodos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genómica/métodos , Redes y Vías Metabólicas , Filogenia
17.
J Exp Bot ; 69(7): 1781-1794, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29394403

RESUMEN

Dioxins are highly toxic persistent organic pollutants bioaccumulated by both plants and animals that cause severe developmental abnormalities in humans. We investigated the effects of dioxins on seed development in Arabidopsis. Plants were exposed to various concentrations of the most toxic congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the effects on seed development were analysed in-depth at transcriptome, proteome and metabolome levels. Exposure to dioxin led to generalized effects on vegetative tissues plus a specific set of perturbations to seed development. Mature seeds from TCDD-treated plants had a characteristic 'wrinkled' phenotype, due to a two-thirds reduction in storage oil content. Transcriptional analysis of a panel of genes related to lipid and carbohydrate metabolism was consistent with the observed biochemical phenotypes. There were increases in WRI1 and LEC1 expression but decreases in ABI3 and FUS3 expression, which is puzzling in view of the low seed oil phenotype. This anomaly was explained by increased expression of 20S proteasome components that resulted in a substantial degradation of WRI1 protein, despite the up-regulation of the WRI1 gene. Our findings reveal novel effects of dioxins that lead to altered gene regulation patterns that profoundly affect seed development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Contaminantes Ambientales/efectos adversos , Dibenzodioxinas Policloradas/efectos adversos , Complejo de la Endopetidasa Proteasomal/metabolismo , Semillas/efectos de los fármacos , Factores de Transcripción/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Factores de Transcripción/metabolismo
18.
Front Microbiol ; 9: 158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467750

RESUMEN

Aflatoxins (AF) are highly detrimental to human and animal health. We recently demonstrated that the Aspergillus flavus caleosin, AfPXG, had peroxygenase activity and mediated fungal development and AF accumulation. We now report the characterization of an AfPXG-deficient line using reference strain NRRL3357. The resulting fungal phenotype included a severe decrease in mycelium growth, failure to sporulate, and reduced AF production. Increasing cellular oxidative status by administration of hydrogen peroxide and cumene hydroperoxide did not restore the AfPXG-deficient phenotype, which suggests that AfPXG-deficiency is not directly related to oxidative stress. To investigate possible alternative roles of AfPXG, a gain of function approach was used to overexpress AfPXG, with the reporter gene Gfp, in an AfPXG-deficient line, termed AfPXG+ . The resulting phenotype included elevated numbers of stable lipid droplets (LDs) plus enhanced AF production. Highly purified LDs from AfPXG+ cultures sequestered AF and this ability was positively correlated with overall LD number. Site-specific mutagenesis of AfPXG to delete Histidine 85 (AfPXGHis85), a residue essential for its catalytic activity, or deletion of the putative LD targeting domain (AfPXGD126-140), showed that AfPXG-peroxygenase activity was required for AF biosynthesis and that integration of AF into LDs was required for their export via a LD-dependent pathway. Ectopic expression in fungal cells of the plant LD-associated protein, oleosin, also resulted in both additional LD accumulation and enhanced AF secretion. These results suggest that both fungal LDs and their associated caleosin proteins are intimately involved in the biosynthesis, trafficking, and secretion of AF.

20.
Front Plant Sci ; 7: 836, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375673

RESUMEN

Contamination of aquatic environments with dioxins, the most toxic group of persistent organic pollutants (POPs), is a major ecological issue. Dioxins are highly lipophilic and bioaccumulate in fatty tissues of marine organisms used for seafood where they constitute a potential risk for human health. Lipid droplets (LDs) purified from date palm, Phoenix dactylifera, seeds were characterized and their capacity to extract dioxins from aquatic systems was assessed. The bioaffinity of date palm LDs toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins was determined. Fractioned LDs were spheroidal with mean diameters of 2.5 µm, enclosing an oil-rich core of 392.5 mg mL(-1). Isolated LDs did not aggregate and/or coalesce unless placed in acidic media and were strongly associated with three major groups of polypeptides of relative mass 32-37, 20-24, and 16-18 kDa. These masses correspond to the LD-associated proteins, oleosins, caleosins, and steroleosins, respectively. Efficient partitioning of TCDD into LDs occurred with a coefficient of log K LB/w,TCDD = 7.528 ± 0.024; it was optimal at neutral pH and was dependent on the presence of the oil-rich core, but was independent of the presence of LD-associated proteins. Bioinformatic analysis of the date palm genome revealed nine oleosin-like, five caleosin-like, and five steroleosin-like sequences, with predicted structures having putative lipid-binding domains that match their LD stabilizing roles and use as bio-based encapsulation systems. Transcriptomic analysis of date palm seedlings exposed to TCDD showed strong up-regulation of several caleosin and steroleosin genes, consistent with increased LD formation. The results suggest that the plant LDs could be used in ecological remediation strategies to remove POPs from aquatic environments. Recent reports suggest that several fungal and algal species also use LDs to sequester both external and internally derived hydrophobic toxins, which indicates that our approach could be used as a broader biomimetic strategy for toxin removal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA