Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(3): e90672, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637793

RESUMEN

Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional 'task positive' and 'task negative' (a.k.a 'default mode') regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Adulto , Análisis de Varianza , Análisis por Conglomerados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Descanso , Adulto Joven
2.
Neuroinformatics ; 9(1): 69-84, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21249532

RESUMEN

Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software--BioImage Suite (bioimagesuite.org).


Asunto(s)
Algoritmos , Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico por Imagen , Humanos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...