Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Heliyon ; 10(5): e26637, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444498

RESUMEN

Hydrogen will play an indispensable role as both an energy vector and as a molecule in essential products in the transition to climate neutrality. However, the optimal sustainable hydrogen production system is not definitive due to challenges in energy conversion efficiency, economic cost, and associated marginal abatement cost. This review summarises and contrasts different sustainable hydrogen production technologies including for their development, potential for improvement, barriers to large-scale industrial application, capital and operating cost, and life-cycle environmental impact. Polymer electrolyte membrane water electrolysis technology shows significant potential for large-scale application in the near-term, with a higher technology readiness level (expected to be 9 by 2030) and a levelized cost of hydrogen expected to be 4.15-6 €/kg H2 in 2030; this equates to a 50% decrease as compared to 2020. The four-step copper-chlorine (Cu-Cl) water thermochemical cycle can perform better in terms of life cycle environmental impact than the three- and five-step Cu-Cl cycle, however, due to system complexity and high capital expenditure, the thermochemical cycle is more suitable for long-term application should the technology develop. Biological conversion technologies (such as photo/dark fermentation) are at a lower technology readiness level, and the system efficiency of some of these pathways such as biophotolysis is low (less than 10%). Biomass gasification may be a more mature technology than some biological conversion pathways owing to its higher system efficiency (40%-50%). Biological conversion systems also have higher costs and as such require significant development to be comparable to hydrogen produced via electrolysis.

2.
Bioengineered ; 14(1): 2245991, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37712640

RESUMEN

Marginal Abatement Cost Curves compare and assess greenhouse gas mitigation options available to various sectors of the economy. In the Irish agricultural sector, large anaerobic digestion facilities are currently considered a high-cost abatement solution. In prior studies of anaerobic digestion abatement costs, two options were assessed: the generation of heat and electricity from biogas (115 €/tCO2eq) and the production of renewable heat from biomethane (280 €/tCO2eq). Both scenarios encompass single cost values that may not capture the potentially variable nature of such systems. In contrast, prior techno-economic analyses and lifecycle analyses can provide a comparison of the abatement costs of anaerobic digestion systems at a range of scales. This work compares two case studies (based on prior literature) for small and medium-scale on farm anaerobic digestion systems. The small-scale system is set in Ireland with cattle slurry collected in open tanks during the winter, while the medium-scale system is set in the USA with cattle slurry collected periodically indoors all year-round. It was found that the abatement cost can vary between -117 to +79 € per t CO2eq. The key variables that affected the abatement cost were additional revenue streams such as biofertilizer sales, displaced energy savings, and additional incentives and emissions savings within the system boundary. Including only some of these options in the analysis resulted in higher abatement costs being reported. Based on the variation between system topologies and therefore system boundaries, assigning a single mitigation cost to anaerobic digestion systems may not be representative.


The veracity of an abatement cost analysis depends on a clear methodological process.The abatement cost varies based on the processes considered within the system boundary.On-farm digestion abatement costs assessed ranged from -117 to +79 €/tCO2eq.On-farm emissions savings ranged from 609 to 10,358 tCO2eq/yr.Abatement costs reduce when considering the income and emissions savings from co-benefits.


Asunto(s)
Agricultura , Biocombustibles , Animales , Bovinos , Granjas , Anaerobiosis , Comercio
3.
ACS Eng Au ; 3(4): 224-234, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37601416

RESUMEN

The by-products generated from the whiskey distillation process consist of organic liquids with a high chemical oxygen demand (COD) and residues with a high solid content. Low-carbon strategies that repurpose and valorize such by-products are now imperative to reduce the carbon footprint of the food and beverage industries. The operation of a two-phase anaerobic digester to produce volatile fatty acids (VFAs) and biogas may enable distilleries to transition toward a low-carbon bioeconomy. An example of such a system is a leach bed reactor connected to an expanded granular sludge bed (LBR-EGSB) which was designed, commissioned, and conceptually validated in this paper. Several design improvements progress the LBR-EGSB beyond previous reactor designs. An external gas-liquid-solid separator in the EGSB was used to capture any residual gases produced by the effluent and may reduce the amount of methane slippage and biomass washout. The implementation of a siphon-actuated leachate cup is a low-cost alternative that is less prone to actuation malfunction as compared to electrically actuated solenoid valves in previous reactor designs. Furthermore, replacing fresh water with distillery's liquid by-products as leachate promotes a circular repurpose and reuse philosophy. The system proved to be effective in generating VFAs (10.3 g VFAs L-1Leachate), in EGSB COD removal (96%), and in producing methane-rich biogas (75%vol), which is higher than the values achieved by traditional anaerobic digestion systems. The LBR-EGSB could ultimately provide more by-product valorization and decarbonization opportunities than traditional anaerobic digestion systems for a whiskey distillery.

4.
Bioresour Technol ; 385: 129364, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336452

RESUMEN

Future energy systems necessitate dispatchable renewable energy to balance electrical grids with high shares of intermittent renewables. Biogas from anaerobic digestion (AD) can generate electricity on-demand. High-rate methanogenic reactors, such as the Upflow Anaerobic Sludge Blanket (UASB), can react quicker to variations in feeding as compared to traditional AD systems. In this study, experimental trials validated the feasibility of operating the UASB in a demand-driven manner. The UASB was operated with leachate produced from a hydrolysis reactor treating grass silage. The UASB demonstrated a high degree of flexibility in responding to variable feeding regimes. The intra-day biogas production rate could be increased by up to 123% under 4 hours in demand-driven operation, without significant deterioration in performance. A model based on kinetic analysis was developed to help align demand-driven operation with the grid. The findings suggest significant opportunities for UASBs to provide positive and negative balance to the power grid.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Biocombustibles , Cinética , Reactores Biológicos , Metano
5.
Bioresour Technol ; 383: 129239, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247792

RESUMEN

The valorisation of whiskey by-products was assessed and compared in three anaerobic digestion systems. The systems produced similar methane yields, which could satisfy up to 44% of the thermal energy demand at a distillery. Using methane generated from by-products would displace natural gas and reduce the distillery's carbon footprint. Two-phase systems had higher methane content (ca. 75 %vol) than the traditional system (54 %vol) and furthermore, unlocked opportunities for volatile fatty acid production. The potential value that could be generated from the extraction of butyric acid and caproic acid was approximately €6.76 million for a 50 million litre alcohol facility (0.14 € per litre of whiskey). All three anaerobic digestion systems showed the potential to valorise whiskey by-products and convert current linear distillery production processes into circular repurpose and reuse production processes.


Asunto(s)
Bebidas Alcohólicas , Reactores Biológicos , Anaerobiosis , Alcoholes , Metano , Biocombustibles
6.
J Environ Manage ; 329: 116976, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535142

RESUMEN

This work aims to assess the potential biogas resource of by-products from the production of distilled spirits at 9 operational distilleries in 7 countries. An additional objective was the calculation of the energy resource and Scope 1 greenhouse gas (GHG) emission savings from the use of 21 by-products from the distilleries as a feedstock for anaerobic digestion (AD). To present a holistic perspective on the integration of AD with distilleries, an overview of additional criteria to be considered was provided. The biochemical methane potential (BMP) of the by-products associated with a selection of distilled spirits was experimentally determined. The BMP ranged from 161 L methane per kg volatile solid (LCH4/kgVS) to 589 LCH4/kgVS with an average value of 332 LCH4/kgVS. Biogas could reduce distillery fossil fuel demand by 49% when produced from un-processed by-products, by 66% when produced from a mixture of separated by-products, by 16% when produced from concentrated by-products and by 13% when produced from liquid by-products. The average Scope 1 GHG emission saving when using un-processed by-products was 52%, a mix of separated by-products allowed for a reduction of 66%, liquid by-products achieved an average reduction of 14%, and the use of concentrated by-products reduced GHG emissions by 17% on average. When evaluating which distilleries are "of most interest" for the integration of AD, other criteria to be considered include: by-product properties, the size of the AD facility required, the quantity of digestate produced, and the location of the distilleries in terms of both land availability to construct the AD facility and the proximity to land on which to spread digestate.


Asunto(s)
Biocombustibles , Metano , Anaerobiosis , Energía Renovable
7.
J Environ Manage ; 317: 115312, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751231

RESUMEN

Increased biogas production from increasing numbers of anaerobic digestion (AD) facilities has increased the mass of digestate applied to agricultural land close to AD plants and has led to an oversupply in some regions. This necessitates long distance digestate transportation accompanied by economic, environmental, and social drawbacks. This work assesses the performance of three different digestate management options (MOs); land application of whole digestate (MO1), digestate separation (MO2), and digestate separation and evaporation (MO3), combined with centralised or decentralised digestate storage. All MOs required the same landbank area, whilst MO2 and MO3 reduced digestate management costs by 9% and 37% (if recovered heat is used) respectively. GHG emissions from MO2 were 41% lower than MO1 if renewable electricity was used. MO3 reduced GHG emissions by 63% compared to MO1, if renewable electricity and recovered heat were used. MO2 required the same centralised digestate storage volume as MO1 while MO3 required 44% of the centralised storage volume. Centralised digestate storage required a maximum of 79 days for digestate transportation (33 trucks/day, 20 m3 capacity) to land for MO1 and MO2, and 35 days for MO3. Decentralised digestate storage required 63 storage tanks and 15 trucks/day for MO1, 69 tanks and 15 trucks/day for MO2, and 68 tanks and 7 trucks/day for MO3. Tank size ranged from 500 m3 to 20,000 m3. MO3 combined with decentralised storage could reduce the cost and GHG emissions (if recovered energy is used), vehicle movements, and the number of storage tanks required for digestate management.


Asunto(s)
Agricultura , Biocombustibles , Anaerobiosis
8.
Bioresour Technol ; 358: 127294, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35550922

RESUMEN

Microbial chain elongation fermentation is an alternative technology for medium-chain fatty acid (MCFA) production. This paper proposed the addition of pyrochar and graphene in chain elongation to improve MCFA production using ethanol and acetate as substrates. Results showed that the yield of, and selectivity towards, C6 n-caproate were significantly enhanced with pyrochar addition. At the optimal mass ratio of pyrochar to substrate of 2 g/g, the maximum n-caproate yield of 13.67 g chemical oxygen demand/L and the corresponding selectivity of 56.8% were obtained; this represents an increase of 115% and 128% respectively as compared with no pyrochar addition. Such improvements were postulated as due to the high electrical conductivity and surface redox groups of pyrochar. The optimal ethanol to acetate molar ratio of 2 mol/mol achieved the highest MCFA yield under pyrochar mediated chain elongation conditions. Thermodynamic calculations modelled an energy benefit of 93.50 kJ/mol reaction for pyrochar mediated n-caproate production.


Asunto(s)
Caproatos , Ácidos Grasos , Acetatos , Etanol , Fermentación , Termodinámica
9.
Bioresour Technol ; 351: 126950, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257881

RESUMEN

Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.


Asunto(s)
Biocombustibles , Metano , Álcalis , Anaerobiosis , Biomasa , Lignina
10.
iScience ; 24(9): 102998, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34522851

RESUMEN

Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.

11.
Biotechnol Adv ; 52: 107812, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364985

RESUMEN

Anaerobic digestion (AD) of organic waste to produce biogas is a mature biotechnology commercialised for decades. However, the relatively recent discovery of direct interspecies electron transfer (DIET) brings a new opportunity to improve the efficiency of biogas technology. DIET may replace mediated interspecies electron transfer (MIET) by efficient electron transfer between exoelectrogens and electrotrophic methanogens, thereby enhancing yields and rates of biogas production. Ethanol, as the initial electron donor in the discovery of the DIET pathway, is now a "hot topic" in the literature. Recent studies have indicated that ethanol in AD functions not only as the substrate, but also as the precursor to stimulate DIET by enriching exoelectrogens and electrotrophic methanogens for co-digesting complex organic wastes. This review aims to highlight the state of the art and recent advances in ethanol-based DIET in AD. The DIET associated reactions of ethanol oxidation and carbon dioxide reduction are assessed by thermodynamic analysis to reveal the extent of the potential for improvement of the AD processes that utilizes DIET pathways. Three ethanol-based DIET strategies are discussed: (1) ethanol as the sole substrate supplemented with conductive materials in AD, (2) ethanol co-digestion with complex substrates and (3) ethanol-type fermentation prior to AD. This review aims to chart the pathways for improved AD performance by utilizing ethanol-based DIET in specific treatments of biological wastes.


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Transporte de Electrón , Electrones , Etanol
12.
Ind Eng Chem Res ; 60(15): 5688-5704, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-34276129

RESUMEN

The two-step bubble column-photobioreactor photosynthetic biogas upgrading system can enable simultaneous production of biomethane and value-added products from microalgae. However, due to the influence of a large number of variables, including downstream processes and the presence of microalgae, no unanimity has been reached regarding the performance of bubble column reactors in photosynthetic biogas upgrading. To investigate this further, the present work documents in detail, the design and commissioning of a lab-scale bubble column reactor capable of treating up to 16.3 L/h of biogas while being scalable. The performance of the bubble column was assessed at a pH of 9.35 with different algal densities of Spirulina platensis at 20 °C in the presence of light (3-5 klux or 40.5-67.5 µmol m-2 s-1). A liquid/gas flow (L/G) ratio of 0.5 allowed consistent CO2 removal of over 98% irrespective of the algal density or its photosynthetic activity. For lower concentrations of algae, the volumetric O2 concentration in the upgraded biomethane varied between 0.05 and 0.52%, thus providing grid quality biomethane. However, for higher algal concentrations, increased oxygen content in the upgraded biomethane due to both enhanced O2 stripping and the photosynthetic activity of the microalgae as well as clogging and foaming posed severe operational challenges.

13.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498314

RESUMEN

Bioactive plant-based compounds have shown promise as protective agents across multiple domains including improvements in neurological and psychological measures. Methodological challenges have limited our understanding of the neurophysiological changes associated with polyphenol-rich supplements such as whole coffee cherry extract (WCCE). In the current study, we (1) compared 100 mg of WCCE to a placebo using an acute, randomized, double-blind, within-subject, cross-over design, and we (2) conducted a phytochemical analysis of WCCE. The primary objective of the study was to determine the neurophysiological and behavioral changes that resulted from the acute administration of WCCE. We hypothesized that WCCE would increase brain-derived neurotrophic factor (BDNF) and glutamate levels while also increasing neurofunctional measures in cognitive brain regions. Furthermore, we expected there to be increased behavioral performance associated with WCCE, as measured by reaction time and accuracy. Participants underwent four neuroimaging scans (pre- and post-WCCE and placebo) to assess neurofunctional/metabolic outcomes using functional magnetic resonance imaging and magnetic resonance spectroscopy. The results suggest that polyphenol-rich WCCE is associated with decreased reaction time and may protect against cognitive errors on tasks of working memory and response inhibition. Behavioral findings were concomitant with neurofunctional changes in structures involved in decision-making and attention. Specifically, we found increased functional connectivity between the anterior cingulate and regions involved in sensory and decision-making networks. Additionally, we observed increased BDNF and an increased glutamate/gamma-aminobutyric acid (GABA) ratio following WCCE administration. These results suggest that WCCE is associated with acute neurophysiological changes supportive of faster reaction times and increased, sustained attention.

14.
Trends Biotechnol ; 39(4): 370-380, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33451822

RESUMEN

Bioelectrochemical technologies such as electro-fermentation and microbial CO2 electrosynthesis are emerging interdisciplinary technologies that can produce renewable fuels and chemicals (such as carboxylic acids). The benefits of electrically driven bioprocesses include improved production rate, selectivity, and carbon conversion efficiency. However, the accumulation of products can lead to inhibition of biocatalysts, necessitating further effort in separating products. The recent discovery of a new photoenzyme, capable of converting carboxylic acids to bio-alkanes, has offered an opportunity for system integration, providing a promising approach for simultaneous product separation and valorisation. Combining the strengths of photo/bio/electrochemical catalysis, we discuss an innovative circular cascading system that converts biomass and CO2 to value-added bio-alkanes (CnH2n+2, n = 2 to 5) whilst achieving carbon circularity.


Asunto(s)
Alcanos , Biomasa , Dióxido de Carbono , Electroquímica , Alcanos/metabolismo , Dióxido de Carbono/metabolismo , Catálisis
15.
J Hazard Mater ; 399: 122830, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937692

RESUMEN

Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.


Asunto(s)
Electrones , Metano , Anaerobiosis , Reactores Biológicos , Suplementos Dietéticos , Transporte de Electrón , Níquel , Aguas del Alcantarillado
16.
Bioresour Technol ; 304: 123027, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113833

RESUMEN

Synergistic opportunities to combine biomethane production via anaerobic digestion whilst cultivating microalgae have been previously suggested in literature. While biomethane is a promising and flexible renewable energy vector, microalgae are increasingly gaining importance as an alternate source of food and/or feed, chemicals and energy for advanced biofuels. However, simultaneously achieving, grid quality biomethane, effective microalgal digestate treatment, high microalgae growth rate, and the most sustainable use of the algal biomass is a major challenge. In this regard, the present paper proposes multiple configurations of an innovative Cascading Algal Biomethane-Biorefinery System (CABBS) using a novel two-step bubble column-photobioreactor photosynthetic biogas upgrading technology. To overcome the limitations in choice of microalgae for optimal system operation, a microalgae composition based biorefinery decision tree has also been conceptualised to maximise profitability. Techno-economic, environmental and practical aspects have been discussed to provide a comprehensive perspective of the proposed systems.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Fotobiorreactores , Fotosíntesis
17.
Neurosci Res ; 150: 51-59, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30763590

RESUMEN

Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador
18.
Bioengineered ; 10(1): 604-634, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31679461

RESUMEN

The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.


Asunto(s)
Biocombustibles/análisis , Hidrógeno/metabolismo , Metano/metabolismo , Reactores Biológicos/microbiología , Biotecnología , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Hidrógeno/química , Metano/química , Energía Renovable
19.
Biotechnol Adv ; 37(8): 107444, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31476422

RESUMEN

Photosynthetic biogas upgrading using microalgae provides a promising alternative to commercial upgrading processes as it allows for carbon capture and re-use, improving the sustainability of the process in a circular economy system. A two-step absorption column-photobioreactor system employing alkaline carbonate solution and flat plate photobioreactors is proposed. Together with process optimisation, the choice of microalgae species is vital to ensure continuous performance with optimal efficiency. In this paper, in addition to critically assessing the system design and operation conditions for optimisation, five criteria are selected for choosing optimal microalgae species for biogas upgrading. These include: ability for mixotrophic growth; high pH tolerance; external carbonic anhydrase activity; high CO2 tolerance; and ease of harvesting. Based on such criteria, five common microalgae species were identified as potential candidates. Of these, Spirulina platensis is deemed the most favourable species. An industrial perspective of the technology further reveals the significant challenges for successful commercial application of microalgal upgrading of biogas, including: a significant land footprint; need for decreasing microalgae solution recirculation rate; and selecting preferable microalgae utilisation pathway.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Dióxido de Carbono , Fotobiorreactores , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...