Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(19): eadl6601, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728405

RESUMEN

One of the stranger planetary rings is Saturn's narrow, clumpy F ring, lying just outside the main rings, in a region disturbed by chaotic orbital dynamics. We show that the F ring has a stable "true core" that dominates its mass and is confined into discontinuous short arcs of particles larger than a few millimeters in radius. The more obvious micron-size particles seen in images, outlining and obscuring the true core, contribute only a small fraction of its mass. We found that these arcs of large particles orbit Saturn in a specific corotational resonance with the nearby 100-kilometer diameter ringmoon Prometheus, which stabilizes the F ring material and allows it to persist within the disturbed region for decades or longer. Toward the end of the observing period, a small chaotic glitch in the orbit of Prometheus temporarily disrupted the confinement, but the arcs seem to be able to adapt.

2.
Science ; 364(6445)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31196983

RESUMEN

Saturn's rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system's dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures.

3.
Science ; 340(6131): 460-4, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23620048

RESUMEN

We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.

4.
Nature ; 453(7196): 739-44, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18528389

RESUMEN

Saturn's narrow F ring exhibits several unusual features that vary on timescales of hours to years. These include transient clumps, a central core surrounded by a multistranded structure and a regular series of longitudinal channels associated with Prometheus, one of the ring's two 'shepherding' satellites. Several smaller moonlets and clumps have been detected in the ring's immediate vicinity, and a population of embedded objects has been inferred. Here we report direct evidence of moonlets embedded in the ring's bright core, and show that most of the F ring's morphology results from the continual gravitational and collisional effects of small satellites, often combined with the perturbing effect of Prometheus. The F-ring region is perhaps the only location in the Solar System where large-scale collisional processes are occurring on an almost daily basis.

5.
Nature ; 440(7084): 648-50, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16572165

RESUMEN

Saturn's main rings are composed predominantly of water-ice particles ranging between about 1 centimetre and 10 metres in radius. Above this size range, the number of particles drops sharply, according to the interpretation of spacecraft and stellar occultations. Other than the gap moons Pan and Daphnis (the provisional name of S/2005 S1), which have sizes of several kilometres, no individual bodies in the rings have been directly observed, and the population of ring particles larger than ten metres has been essentially unknown. Here we report the observation of four longitudinal double-streaks in an otherwise bland part of the mid-A ring. We infer that these 'propeller'-shaped perturbations arise from the effects of embedded moonlets approximately 40 to 120 m in diameter. Direct observation of this phenomenon validates models of proto-planetary disks in which similar processes are posited. A population of moonlets, as implied by the size distribution that we find, could help explain gaps in the more tenuous regions of the Cassini division and the C ring. The existence of such large embedded moonlets is most naturally compatible with a ring originating in the break-up of a larger body, but accretion from a circumplanetary disk is also plausible if subsequent growth onto large particles occurs after the primary accretion phase has concluded.

6.
Science ; 311(5763): 961-2, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16484482
7.
Nature ; 437(7063): 1326-9, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16251957

RESUMEN

Images of Saturn's narrow and contorted F ring returned by the Cassini spacecraft have revealed phenomena not previously detected in any planetary ring system. The perturbing effect of the inner shepherding satellite, Prometheus, seems to introduce channels through the F ring and a 'streamer'--a line of particles that link the ring to the satellite. The detailed mechanism for the formation of these features has been lacking an explanation. Here we show that these phenomena can be understood in terms of a simple gravitational interaction as Prometheus approaches and recedes from the F ring every 14.7 hours. Our numerical models show that as Prometheus recedes from its closest approach to the F ring, it draws out ring material; one orbital period later, this affected region has undergone keplerian shear and is visible as a channel, in excellent agreement with structures seen in the Cassini images. Prometheus' periodic disruption of the F ring will become more pronounced as the two orbits approach their minimum separation in 2009. The model predicts that the appearance of streamers and the associated channels will vary in a regular fashion on a timescale of one orbital period.

8.
Nature ; 434(7030): 159-68, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15758990

RESUMEN

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.

9.
Science ; 299(5612): 1541-7, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12624258

RESUMEN

The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...