Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(9): 16083-16089, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859245

RESUMEN

We report on a Kerr-lens mode-locked Tm,Ho-codoped calcium aluminate laser with in-band pumping of the Tm ions by a spatially single-mode 1678 nm Raman fiber laser. The structurally disordered CaGdAlO4 host crystal is also codoped also with the passive Lu ion for additional inhomogeneous line broadening. The Tm,Ho,Lu:CaGdAlO4 laser generates soliton pulses as short as 79 fs at a central wavelength of 2073.6 nm via soft-aperture Kerr-lens mode-locking. The corresponding average output power amounts to 91 mW at a pulse repetition rate of ∼86 MHz. The average output power can be scaled to 842 mW at the expense of slightly longer pulses of 155 fs at 2045.9 nm, which corresponds to a peak power of ∼58 kW. To the best of our knowledge, this represents the first demonstration of an in-band pumped Kerr-lens mode-locked Tm,Ho solid-state laser at ∼2 µm.

2.
Appl Opt ; 63(7): 1811-1814, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437284

RESUMEN

We demonstrate that 3-mm-thick, periodically poled L i N b O 3 enables energy scaling of a nonresonant optical parametric oscillator operated in the narrowband mode with a volume Bragg grating at the signal wavelength. Utilizing the full available pump power at 1064 nm, we obtained maximum average powers of 2.25 and 2.08 W for the signal (1.922 µm) and idler (2.383 µm) pulses at 10 kHz, at a total conversion efficiency of 32.8%, which represents a fourfold increase in terms of peak powers over our previous work. The signal and idler spectral linewidths were ∼1n m, with pulse lengths of ∼6n s and an idler beam propagation factor of ∼5.

3.
JOR Spine ; 6(2): e1232, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37361334

RESUMEN

Background: Nuclectomy, also known as nucleotomy, is a percutaneous surgical procedure performed to remove nucleus material from the center of the disc. Multiple techniques have been considered to perform a nuclectomy, however, the advantages and disadvantages of each are not well understood. Aims: This in vitro biomechanical investigation on human cadaveric specimens aimed to quantitatively compare three nuclectomy techniques performed using an automated shaver, rongeurs, and laser. Material & Methods: Comparisons were made in terms of mass, volume and location of material removal, changes in disc height, and stiffness. Fifteen vertebra-disc-vertebra lumbar specimens were acquired from six donors (40 ± 13 years) and split into three groups. Before and after nucleotomy axial mechanical tests were performed and T2-weighted 9.4T MRIs were acquired for each specimen. Results: When using the automated shaver and rongeurs similar volumes of disc material were removed (2.51 ± 1.10% and 2.76 ± 1.39% of the total disc volume, respectively), while considerably less material was removed using the laser (0.12 ± 0.07%). Nuclectomy using the automated shaver and rongeurs significantly reduced the toe-region stiffness (p = 0.036), while the reduction in the linear region stiffness was significant only for the rongeurs group (p = 0.011). Post-nuclectomy, 60% of the rongeurs group specimens showed changes in the endplate profile while 40% from the laser group showed subchondral marrow changes. Discussion: From the MRIs, homogeneous cavities were seen in the center of the disc when using the automated shaver. When using rongeurs, material was removed non-homogeneously both from the nucleus and annulus regions. Laser ablation formed small and localized cavities suggesting that the technique is not suitable to remove large volumes of material unless it is developed and optimized for this application. Conclusion: The results demonstrate that both rongeurs and automated shavers can be used to remove large volumes of NP material but the reduced risk of collateral damage to surrounding tissues suggests that the automated shaver may be more suitable.

4.
Opt Lett ; 48(2): 387-390, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638464

RESUMEN

We demonstrate a new, to the best of our knowledge, method of generating mid-infrared pulses by difference frequency mixing the Stokes pulse generated by four-wave mixing in a photonic crystal fiber with the remaining pump pulse. The Stokes pulses generated by four-wave mixing are inherently overlapped temporally and spatially with the pump pulse at the output of the fiber. Focusing this output into a nonlinear crystal phase matched for difference frequency generation between the pump and Stokes pulses results in a simple method of generating mid-infrared pulses. With a pump source at 1.064 µm, and a photonic crystal fiber engineered to generate Stokes pulses at approximately 1.65 µm, we generate 160 mW of mid-infrared light at approximately 3 µm through difference frequency generation.

5.
J Biophotonics ; 11(11): e201800087, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29978591

RESUMEN

We demonstrate a simplified set-up for STED microscopy with a straightforward alignment procedure that uses a single spatial light modulator (SLM) with collinear incident excitation and depletion beams to provide phase modulation of the beam profiles and correction of optical aberrations. We show that this approach can be used to extend the field of view for STED microscopy by correcting chromatic aberration that otherwise leads to walk-off between the focused excitation and depletion beams. We further show how this arrangement can be adapted to increase the imaging speed through multibeam excitation and depletion. Fine adjustments to the alignment can be accomplished using the SLM only, conferring the potential for automation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Animales , Caenorhabditis elegans , Fenómenos Ópticos , Factores de Tiempo
6.
Opt Express ; 21(13): 15826-33, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23842368

RESUMEN

We report a near-visible parametric wavelength converter comprising a polarization-maintaining photonic crystal fiber (PM-PCF) pumped by a highly versatile diode-seeded master-oscillator power amplifier system based around 1.06 µm. The device is broadly tunable in wavelength (0.74-0.81 µm), pulse duration (0.2-1.5 ns) and repetition rate (1-30 MHz). A maximum anti-Stokes slope conversion efficiency of 14.9% is achieved with corresponding anti-Stokes average output powers of 845 mW, at a wavelength of 0.775 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...