Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Cell Physiol ; : e31360, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962842

RESUMEN

Junior faculty mentoring committees have important roles in ensuring that faculty thrive and adjust to their new positions and institutions. Here, we describe the purpose, structure, and benefits of junior faculty mentoring committees, which can be a powerful tool for early-career academic investigators in science, technology, engineering, mathematics, and medical (STEMM) fields. There is a paucity of information about what mentoring committees are, how to use them effectively, what areas they should evaluate, and how they can most successfully help junior faculty progress in their careers. This work offers guidance for both junior faculty mentees and mentoring committee members on how to best structure and utilize mentoring committees to promote junior faculty success. A better understanding of the intricacies of the mentoring committee will allow junior faculty members to self-advocate and will equip committee mentors with tools to ensure that junior faculty are successful in thriving in academia.

2.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915644

RESUMEN

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.

3.
J Cell Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888084

RESUMEN

In academia, particularly in science, technology, engineering, and mathematics (STEM), writing accountability groups have emerged as an effective technique to enhance writing productivity by offering structure, increasing the commitment to write, and fostering social commitment. The rapid development of technology has introduced a new challenge across STEM fields: technostress, where individuals face heightened stress due to novel applications of technology. To address this, we introduce Technology Accountability Groups (TAGs), a novel form of community support for graduate students and faculty. TAGs are tailored to help individuals navigate technological innovations, alleviate technostress, acquire new skills, motivate, and connect with leaders in the field. This paper presents a framework for establishing, implementing, and sustaining TAGs in STEM.

4.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826465

RESUMEN

The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LD) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. Particularly, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Analysis showed reductions in LD volume, area, and perimeter in aged samples compared to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for mitochondria interacting with LD lipids. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology and mitochondrial functionality, metabolism, and bioactivity in aged BAT.

5.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798364

RESUMEN

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

6.
STAR Protoc ; 5(2): 102997, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748884

RESUMEN

It is well-understood that the science, technology, engineering, and mathematics (STEM) fields have unique challenges that discourage recruiting and retaining underrepresented minorities. Research programs aimed at undergraduates have arisen as a critical mechanism for fostering innovation and addressing the challenges faced by underrepresented minorities. Here, we review various undergraduate research programs designed to provide exposure to undergraduates, with a focus on underrepresented minorities in STEM disciplines. We provide insight into selected programs' objectives, key features, potential limitations, and outcomes. We also offer recommendations for future improvements of each research program, particularly in the context of mentorship. These programs range from broad-reaching initiatives (e.g., Leadership Alliance) to more specific programs targeting underrepresented students. By offering a nuanced understanding of each program's structure, we seek to provide a brief overview of the landscape of diversity-focused STEM initiatives and a guide on how to run a research program effectively.


Asunto(s)
Matemática , Grupos Minoritarios , Ciencia , Estudiantes , Tecnología , Humanos , Grupos Minoritarios/educación , Tecnología/educación , Ciencia/educación , Matemática/educación , Investigación/educación , Universidades , Ingeniería/educación
7.
J Cell Physiol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770789

RESUMEN

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

8.
J Cell Physiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38595027

RESUMEN

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

9.
Nutrients ; 16(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612952

RESUMEN

Food security is a concept with evolving definitions and meanings, shaped by contested knowledge and changing contexts. The way in which food security is understood by governments impacts how it is addressed in public policy. This research investigates the evolution of discourses and practices in Tasmanian food and nutrition policies from 1994 to 2023. Four foundational documents were analysed using qualitative document analysis, revealing persistent food insecurity issues over three decades. The analysis identified a duality in addressing the persistent policy challenges of nutrition-related health issues and food insecurity: the balancing act between advancing public health improvements and safeguarding Tasmania's economy. The research revealed that from 1994 to 2023, Tasmania's food and nutrition policies and strategies have been characterised by various transitions and tensions. Traditional approaches, predominantly emphasising food availability and, to a limited extent, access, have persisted for over thirty years. The transition towards a more contemporary approach to food security, incorporating dimensions of utilisation, stability, sustainability, and agency, has been markedly slow, indicating systemic inertia. This points to an opportunity for future policy evolution, to move towards a dynamic and comprehensive approach. Such an approach would move beyond the narrow focus of food availability to address the complex multi-dimensional nature of food security.


Asunto(s)
Trastornos Nutricionales , Política Nutricional , Humanos , Alimentos , Gobierno , Conocimiento
10.
J Cell Physiol ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462753

RESUMEN

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

12.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38168206

RESUMEN

Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.

13.
J Cell Physiol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226956

RESUMEN

A first-generation college student is typically defined as a student whose biological parent(s) or guardian(s) never attended college or who started but did not finish college. However, "first-generation" can represent diverse family education situations. The first-generation student community is a multifaceted, and intersectional group of individuals who frequently lack educational/financial resources to succeed and, consequently, require supportive environments with rigorous mentorship. However, first-generation students often do not make their identity as first-generation students known to others due to several psychosocial and academic factors. Therefore, they are often "invisible minorities" in higher education. In this paper, we describe the diverse family situations of first-generation students, further define "first-generation," and suggest five actions that first-generation trainees at the undergraduate/graduate stages can engage in to succeed in an academic climate. We also provide suggestions for mentors to accommodate first-generation students' unique experiences and equip them with tools to deliver intentional mentoring practices. We hope that this paper will help promote first-generation student success throughout the academic pipeline.

14.
Adv Biol (Weinh) ; 8(1): e2300186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37607124

RESUMEN

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.


Asunto(s)
Tejido Adiposo Pardo , Membranas Mitocondriales , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético/fisiología , Envejecimiento
15.
Annu Rev Psychol ; 75: 379-404, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585668

RESUMEN

People are fundamentally motivated to be included in social connections that feel safe, connections where they are consistently cared for and protected, not hurt or exploited. Romantic relationships have long played a crucial role in satisfying this fundamental need. This article reconceptualizes the risk-regulation model to argue that people draw on experiences from inside and outside their romantic relationships to satisfy their fundamental need to feel safe depending on others. We first review the direct relational cues (i.e., a partner's affectionate touch, responsive versus unresponsive behavior, and relative power) and indirect cues (i.e., bodily sensations, collective value in the eyes of others, and living conditions) that signal the current safety of social connection and motivate people to connect to others or protect themselves against them. We then review how people's chronic capacity to trust in others controls their sensitivity and reactivity to the safety cues. The article concludes with future research directions.


Asunto(s)
Señales (Psicología) , Emociones , Humanos , Placer , Confianza
16.
Heliyon ; 9(12): e22335, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144282

RESUMEN

Underrepresented faculty have higher burnout rates and lower grant attainment rates when compared with their non-minority counterparts. Many in science, technology, engineering, mathematics, and medicine (STEMM) disciplines, including underrepresented individuals, often have difficulty dedicating time to the writing process, with trainees often being relegated to laboratory tasks in their training years, resulting in a lack of practice in academic writing. Notably, past studies have shown that grant attainment rates of underrepresented individuals are lower than their majority counterparts. Here, we sought to consider a mechanism targeted to underrepresented individuals, although applicable to everyone, to help overcome traditional barriers to writing in STEMM. The authors have hosted a writing accountability group (WAG) that uniquely provides a format focused on physical activity and different forms of writing to strengthen both career development and award/funding attainment. Our objectives were to evaluate this unique format, thus creating a resource for individuals and institutions to learn about WAGs and expand upon the framework to formulate their own WAG. To do this, we performed a small pilot study (n = 21) to investigate attitudes towards the WAG. We present the results of a survey conducted among underrepresented WAG participants, which spanned different career stages and was highly diverse demographically. Our results show that following attendance of our WAG, individuals did not note a significant change in scales pertaining to John Henryism (high-effort coping), resilience, sense of belonging, or grit. However, significant increases were noted in the self-perceived ability to handle stress, confidence in applying for awards, appreciation for mentoring, and satisfaction of WAGs. Taken together, the results of this study suggest that our unique WAG format can have some positive results as a career and writing development opportunity and may be able to support underrepresented individuals in attaining funding at higher education institutions.

17.
Aging Cell ; 22(12): e14009, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37960952

RESUMEN

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Asunto(s)
Imagenología Tridimensional , Membranas Asociadas a Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
18.
STAR Protoc ; 4(4): 102591, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938976

RESUMEN

Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Mioblastos , Diferenciación Celular/fisiología , Técnica del Anticuerpo Fluorescente
19.
Mol Cell ; 83(21): 3766-3772, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922871

RESUMEN

Building a diverse laboratory that is equitable is critical for the retention of talent and the growth of trainees professionally and personally. Here, we outline several strategies including enhancing understanding of cultural competency and humility, establishing laboratory values, and developing equitable laboratory structures to create an inclusive laboratory environment to enable trainees to achieve their highest success.


Asunto(s)
Diversidad, Equidad e Inclusión , Laboratorios
20.
iScience ; 26(10): 107766, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736045

RESUMEN

Maximizing Access to Research Careers (MARC) programs are aimed to increase diversity in science, technology, engineering, math, and medicine (STEMM) fields. However, limited programs and eligibility requirements limit the students who may apply to similar programs. At Winston-Salem State University, we piloted a series of workshops, collectively termed Project Strengthen, to emulate some of the key aspects of MARC programs. Following the workshop, Project Strengthen students showed a significant increase in their understanding of essential educational development skills, such as writing personal statements, applying to graduate school, studying for the GRE, and seeking summer internships. This suggests Project Strengthen may be a potential lower cost comparable option than MARC to make up for current deficiencies in preparedness for graduate school. We also provide educational materials from Project Strengthen, including a clear framework for this seminar series, six ready-made PowerPoints to share with trainees that have been demonstrated to be effective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...