Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 40, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869353

RESUMEN

BACKGROUND: There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS: We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS: This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.


Asunto(s)
Genoma Humano , Impresión Genómica , Familia de Multigenes , Humanos , Alelos , Cromatina
2.
Sci Rep ; 10(1): 13616, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788746

RESUMEN

Topographical variations of metabolite concentrations have been reported in the duodenum, jejunum and ileum of the small intestine, and in human intestinal tumours from those regions, but there are no published metabolite concentrations measurements correlated with linear position in the mouse small intestine or intestinal tumours. Since DNA methylation dynamics are influenced by metabolite concentrations, they too could show linear anatomical variation. We measured metabolites by HR-MAS 1H NMR spectroscopy and DNA cytosine modifications by LC/MS, in normal small intestines of C57BL/6J wild-type mice, and in normal and tumour samples from ApcMin/+ mice. Wild-type mouse intestines showed approximately linear, negative concentration gradations from the pylorus (i.e. the junction with the stomach) of alanine, choline compounds, creatine, leucine and valine. ApcMin/+ mouse tumours showed negative choline and valine gradients, but a positive glycine gradient. 5-Hydroxymethylcytosine showed a positive gradient in the tumours. The linear gradients we found along the length of the mouse small intestine and in tumours contrast with previous reports of discrete concentration changes in the duodenum, jejunum and ileum. To our knowledge, this is also the first report of a systematic measurement of global levels of DNA cytosine modification in wild-type and ApcMin/+ mouse small intestine.


Asunto(s)
5-Metilcitosina/análogos & derivados , Proteína de la Poliposis Adenomatosa del Colon/genética , Colon/química , Neoplasias Intestinales/metabolismo , Intestino Delgado/química , Píloro/química , 5-Metilcitosina/química , Animales , Cromatografía Liquida , Femenino , Neoplasias Intestinales/genética , Masculino , Espectrometría de Masas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Espectroscopía de Protones por Resonancia Magnética
3.
Sci Rep ; 10(1): 546, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953501

RESUMEN

Cytosine hydroxymethylation (5hmC) in mammalian DNA is the product of oxidation of methylated cytosines (5mC) by Ten-Eleven-Translocation (TET) enzymes. While it has been shown that the TETs influence 5mC metabolism, pluripotency and differentiation during early embryonic development, the functional relationship between gene expression and 5hmC in adult (somatic) stem cell differentiation is still unknown. Here we report that 5hmC levels undergo highly dynamic changes during adult stem cell differentiation from intestinal progenitors to differentiated intestinal epithelium. We profiled 5hmC and gene activity in purified mouse intestinal progenitors and differentiated progeny to identify 43425 differentially hydroxymethylated regions and 5325 differentially expressed genes. These differentially marked regions showed both losses and gains of 5hmC after differentiation, despite lower global levels of 5hmC in progenitor cells. In progenitors, 5hmC did not correlate with gene transcript levels, however, upon differentiation the global increase in 5hmC content showed an overall positive correlation with gene expression level as well as prominent associations with histone modifications that typify active genes and enhancer elements. Our data support a gene regulatory role for 5hmC that is predominant over its role in controlling DNA methylation states.


Asunto(s)
5-Metilcitosina/análogos & derivados , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Intestinos/citología , 5-Metilcitosina/farmacología , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Ratones
4.
Essays Biochem ; 63(1): 177-186, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30967478

RESUMEN

Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades support RNA as an important component of chromatin structure [Genes Dev. (2005) 19, 1635-1655; PLoS ONE (2007) 2, e1182; Nat. Genet. (2002) 30, 329-334]. Long non-coding RNAs (lncRNAs) are able to control chromatin structure through nucleosome positioning, interaction with chromatin re-modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the experimental evidence to support them.


Asunto(s)
Cromatina/genética , Genoma/genética , ARN Largo no Codificante/genética , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , ADN/química , ADN/genética , Humanos , Conformación de Ácido Nucleico , Conformación Proteica
5.
Oncotarget ; 7(46): 74734-74746, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27732966

RESUMEN

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 1-beta del Hepatocito/genética , Neoplasias Ováricas/genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Alelos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/patología , Riesgo
6.
Nat Commun ; 7: 10406, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26832224

RESUMEN

Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Ciclo Celular , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas , Interferencia de ARN , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al GTP rho/genética
7.
Sci Rep ; 5: 12714, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239807

RESUMEN

The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/genética , Genoma , MicroARNs/genética , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/análogos & derivados , Animales , Antimetabolitos/farmacología , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Glutatión Peroxidasa/deficiencia , Glutatión Peroxidasa/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Estrés Oxidativo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Glutatión Peroxidasa GPX1
8.
Methods Mol Biol ; 1315: 259-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103905

RESUMEN

Extensive epigenetic reprogramming occurs during mammalian gametogenesis and preimplantation development. DNA methylation patterns that are laid down during these stages are essential for subsequent normal foetal development. The requirement for more precise assessment of the epigenetic programming of in vitro-derived human preimplantation embryo has become of paramount importance following the identification of epigenetic diseases that are associated with assisted reproduction and/or infertility. Such techniques are also useful and applicable to experimental reproductive biology. In order to expand our knowledge of epigenetic marks, including DNA methylation, during mammalian reproduction and early development, it is necessary to test new and sufficiently sensitive protocols. There are, however, unique challenges to obtain DNA methylation data from the small cell numbers that are present in the preimplantation embryo. In this protocol, we describe the successful application of Pyrosequencing(®) to yield quantitative DNA methylation data over several CpG sites at differentially methylated regions (DMRs) at imprinted loci in single blastocysts, in this case, human blastocysts. Future developments of the protocol will allow DNA methylation analysis of a more extensive panel of genes for each embryo and at the same time, since the protocol allows for the extraction of mRNA from the embryo, the comparison between DNA methylation and gene expression.


Asunto(s)
Blastocisto/metabolismo , Metilación de ADN , Análisis de Secuencia de ADN/métodos , Adulto , ADN/genética , ADN/aislamiento & purificación , Genómica , Humanos , Reacción en Cadena de la Polimerasa , Sulfitos/farmacología
9.
Nat Chem Biol ; 11(8): 555-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26098680

RESUMEN

5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.


Asunto(s)
5-Metilcitosina/metabolismo , Envejecimiento/metabolismo , Citosina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Citosina/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Semivida , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo
10.
Genome Biol ; 16: 69, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25853800

RESUMEN

BACKGROUND: The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise. RESULTS: Here, we show that colorectal tumours and cancer cells express Ten-Eleven-Translocation (TET) transcripts at levels similar to normal tissues. Genome-wide analyses show that promoters marked by 5hmC in normal tissue, and those identified as TET2 targets in colorectal cancer cells, are resistant to methylation gain in cancer. In vitro studies of TET2 in cancer cells confirm that these promoters are resistant to methylation gain independently of sustained TET2 expression. We also find that a considerable number of the methylation gain-resistant promoters marked by 5hmC in normal colon overlap with those that are marked with poised bivalent histone modifications in embryonic stem cells. CONCLUSIONS: Together our results indicate that promoters that acquire 5hmC upon normal colon differentiation are innately resistant to neoplastic hypermethylation by mechanisms that do not require high levels of 5hmC in tumours. Our study highlights the potential of cytosine modifications as biomarkers of cancerous cell proliferation.


Asunto(s)
Neoplasias del Colon/genética , Citosina/análogos & derivados , Metilación de ADN/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , 5-Metilcitosina/análogos & derivados , Proliferación Celular/genética , Neoplasias del Colon/patología , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Proteínas Proto-Oncogénicas/genética
11.
Nat Chem ; 6(12): 1049-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25411882

RESUMEN

5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.


Asunto(s)
Citosina/análogos & derivados , ADN/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Ciclo Celular , Proliferación Celular , Citosina/química , Metilación de ADN , Células HCT116 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL
12.
Nat Genet ; 46(6): 528-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24866188

RESUMEN

Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes at an imprinted locus on chromosome 15, including the long noncoding RNA IPW. A new study identifies a critical role for IPW in modulating the expression of maternally expressed genes in trans, which has important implications for the understanding of imprinted gene networks.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , Síndrome de Prader-Willi/genética , ARN no Traducido/genética , Proteínas de Unión al Calcio , Humanos , Masculino
13.
Biochemistry ; 52(52): 9519-27, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24320048

RESUMEN

Long noncoding RNAs (lncRNAs) play a key role in the epigenetic regulation of cells. Many of these lncRNAs function by interacting with histone repressive proteins of the Polycomb group (PcG) family, recruiting them to gene loci to facilitate silencing. Although there are now many RNAs known to interact with the PRC2 complex, little is known about the details of the molecular interactions. Here, we show that the PcG protein heterodimer EZH2-EED is necessary and sufficient for binding to the lncRNA HOTAIR. We also show that protein recognition occurs within a folded 89-mer domain of HOTAIR. This 89-mer represents a minimal binding motif, as further deletion of nucleotides results in substantial loss of affinity for PRC2. These findings provide molecular insights into an important system involved in epigenetic regulation.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Dimerización , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Cinética , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , Unión Proteica , ARN Largo no Codificante/química , ARN Largo no Codificante/genética
14.
Neoplasia ; 15(8): 898-912, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23908591

RESUMEN

We previously reported the association of elevated levels of the multifunctional transcription factor, CCCTC binding factor (CTCF), in breast cancer cells with the specific anti-apoptotic function of CTCF. To understand the molecular mechanisms of this phenomenon, we investigated regulation of the human Bax gene by CTCF in breast and non-breast cells. Two CTCF binding sites (CTSs) within the Bax promoter were identified. In all cells, breast and non-breast, active histone modifications were present at these CTSs, DNA harboring this region was unmethylated, and levels of Bax mRNA and protein were similar. Nevertheless, up-regulation of Bax mRNA and protein and apoptotic cell death were observed only in breast cancer cells depleted of CTCF. We proposed that increased CTCF binding to the Bax promoter in breast cancer cells, by comparison with non-breast cells, may be mechanistically linked to the specific apoptotic phenotype in CTCF-depleted breast cancer cells. In this study, we show that CTCF binding was enriched at the Bax CTSs in breast cancer cells and tumors; in contrast, binding of other transcription factors (SP1, WT1, EGR1, and c-Myc) was generally increased in non-breast cells and normal breast tissues. Our findings suggest a novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells, whereby elevated levels of CTCF support preferential binding of CTCF to the Bax CTSs. In this context, CTCF functions as a transcriptional repressor counteracting influences of positive regulatory factors; depletion of breast cancer cells from CTCF therefore results in the activation of Bax and apoptosis.


Asunto(s)
Neoplasias de la Mama/genética , Epigénesis Genética , Proteínas Represoras/genética , Proteína X Asociada a bcl-2/genética , Apoptosis/genética , Secuencia de Bases , Sitios de Unión/genética , Unión Competitiva , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína X Asociada a bcl-2/metabolismo
15.
Am J Hum Genet ; 93(2): 224-35, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23871723

RESUMEN

Imprinted gene clusters are regulated by long noncoding RNAs (lncRNAs), CCCTC binding factor (CTCF)-mediated boundaries, and DNA methylation. DIRAS3 (also known as ARH1 or NOEY1) is an imprinted gene encoding a protein belonging to the RAS superfamily of GTPases and is located within an intron of a lncRNA called GNG12-AS1. In this study, we investigated whether GNG12-AS1 is imprinted and coregulated with DIRAS3. We report that GNG12-AS1 is coexpressed with DIRAS3 in several tissues and coordinately downregulated with DIRAS3 in breast cancers. GNG12-AS1 has several splice variants, all of which initiate from a single transcription start site. In placenta tissue and normal cell lines, GNG12-AS1 is biallelically expressed but some isoforms are allele-specifically spliced. Cohesin plays a role in allele-specific splicing of GNG12-AS1. In breast cancer cell lines with loss of DIRAS3 imprinting, DIRAS3 and GNG12-AS1 are silenced in cis and the remaining GNG12-AS1 transcripts are predominantly monoallelic. The GNG12-AS1 locus, which includes DIRAS3, provides an example of imprinted cotranscriptional splicing and a potential model system for studying the long-range effects of CTCF-cohesin binding on splicing and transcriptional interference.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Impresión Genómica , ARN Largo no Codificante/genética , Proteínas de Unión al GTP rho/genética , Alelos , Empalme Alternativo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Femenino , Regulación de la Expresión Génica , Humanos , Intrones , Placenta/citología , Placenta/metabolismo , Embarazo , ARN Largo no Codificante/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Proteínas de Unión al GTP rho/metabolismo , Cohesinas
16.
Biochem Soc Trans ; 41(3): 697-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23697928

RESUMEN

Our advances in technology allow us to sequence DNA to uncover genetic differences not only between individuals, but also between normal and diseased cells within an individual. However, there is still a lot we have yet to understand regarding the epigenetic mechanisms that also contribute to our individuality and to disease. The 80th Biochemical Society Annual Symposium entitled Epigenetic Mechanisms in Development and Disease brought together some leading researchers in the field who discussed their latest insights into epigenetic mechanisms. Methylation of DNA has been the focus of much study from both a developmental perspective and imprinting of genes to its contribution to diseases such as cancer. Recently, the modification of methylcytosine to hydoxymethylcytosine within cells was uncovered, which opened a host of potential new mechanisms, and a flurry of new studies are underway to uncover its significance. Epigenetics is not confined to a study of DNA, and the post-translational modifications on the histone proteins have a significant role to play in regulating gene expression. There are many different modifications and, as shown at the Symposium, new variations used by cells are still being uncovered. We are some way to identifying how these modifications are added and removed and the protein complexes responsible for these changes. A focus on the function of the complexes and the interactions between individual modifications to regulate gene expression is advancing our knowledge, as discussed in the accompanying papers, although there are clearly plenty of opportunities for new breakthroughs to be made.


Asunto(s)
Enfermedad/genética , Epigénesis Genética/fisiología , Crecimiento y Desarrollo/genética , Animales , Metilación de ADN , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
17.
Nucleic Acids Res ; 41(10): 5290-302, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23585276

RESUMEN

Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2'deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes.


Asunto(s)
Cromatina/química , Metilación de ADN , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , ARN Largo no Codificante/genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Inhibidores Enzimáticos/farmacología , Expresión Génica , Sitios Genéticos , Histonas/química , Histonas/metabolismo , Humanos , Metilación , Mucoproteínas/metabolismo , Proteínas de Neoplasias , Nucleosomas/química , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción , Cohesinas
18.
Methods Mol Biol ; 925: 173-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22907497

RESUMEN

It is becoming increasingly apparent that chromatin is not randomly folded into the nucleus, but instead is highly organized into specific conformations within the nucleus. One consequence of such higher order structure is that chromatin looping can bring together genomic elements which are separated by several hundreds of kilobases, such as enhancers and promoters, and functionally facilitate their interaction. The Chromosome Conformation Capture (3C) assay is a powerful technique to detect looping structures and assess the probability of interaction between distant genomic elements (1-3). Here we describe the 3C methodology, its power, and limitations, together with the controls and normalization steps required for an accurate analysis.


Asunto(s)
Cromatina/química , Conformación de Ácido Nucleico , Animales , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Ratones , Conformación Proteica
19.
Nat Cell Biol ; 14(7): 753-63, 2012 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-22729083

RESUMEN

It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation. We discovered a network of genetic interactions involving EZH2, UHRF1 (both known to regulate epidermal self-renewal), ING5 (a MORF complex component), BPTF and SMARCA5 (NURF complex components). Genome-wide localization and global mRNA expression analysis revealed that these factors impact two distinct but functionally related gene sets, including integrin extracellular matrix receptors that mediate anchorage of epidermal stem cells to their niche. Using a competitive epidermal reconstitution assay we confirmed that ING5, BPTF, SMARCA5, EZH2 and UHRF1 control differentiation under physiological conditions. Thus, regulation of distinct gene expression programs through the interplay between diverse epigenetic strategies protects epidermal stem cells from differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Epidérmicas , Epigénesis Genética , Redes Reguladoras de Genes , Queratinocitos/metabolismo , Células Madre/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Teorema de Bayes , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Adhesión Celular/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 2 , Interferencia de ARN , ARN Mensajero/metabolismo , Nicho de Células Madre/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
20.
Stem Cells ; 30(2): 161-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109880

RESUMEN

Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Células Madre Pluripotentes/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Metilación de ADN , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA