Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Physiol Biochem Zool ; 95(5): 390-399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35930827

RESUMEN

AbstractMammalian hibernation in ground squirrels is characterized by periods of torpor wherein body temperature approaches ambient temperature and metabolism is reduced to as low as 1/100th of active rates. It is unclear how hibernation affects long-term spatial memory, as tremendous remodeling of neurons is associated with torpor use. Given the suspected links between remodeling and memory formation and retention, we examined long-term spatial memory retention throughout a hibernation season. Animals were trained on a Barnes maze before entering torpor. Animals were tested for memory retention once a month throughout a hibernation season. Results indicate marked variation between individuals. Some squirrels retained memory across multiple torpor bouts, while other squirrels did not. No relationship was found between the number of torpor bouts, duration of bouts, or time spent torpid on long-term memory retention. However, that some squirrels successfully retain memory suggests that the profound remodeling of dendritic spines during torpor does not always lead to memory loss.


Asunto(s)
Hibernación , Sciuridae , Animales , Temperatura Corporal/fisiología , Hibernación/fisiología , Sciuridae/fisiología , Estaciones del Año , Memoria Espacial
2.
Neurobiol Aging ; 97: 129-143, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232936

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive decline of memory and cognitive function. The disease is characterized by the presence of amyloid plaques, tau tangles, altered inflammatory signaling, and alterations in numerous neurotransmitter signaling systems, including γ-aminobutyric acid (GABA). Given the extensive role of GABA in regulating neuronal activity, a careful investigation of GABA-related changes is needed. Further, given persistent inflammation has been demonstrated to drive AD pathology, the presence of GABA B receptor expressed on glia that serve a role regulation of the immune response adds to potential implications of altered GABA in AD. There has not previously been a systematic evaluation of GABA-related changes in an amyloid model of AD that specifically focuses on examining changes in GABA B receptors. In the present study, we examined alterations in several GABA-specific targets in the APP/PS1 mouse model at different ages. In the 4-month-old cohort, no significant deficits in spatial learning and memory or alterations in any of the GABAergic targets were observed compared with wild-type controls. However, we identified significant alterations in several GABA-related targets in the 6-month-old cohort that exhibited spatial learning deficits that include changes in glutamic acid decarboxylase 65, GABA transporter type 3, and GABA B receptors protein and mRNA levels. This was the same cohort at which learning and memory deficits and significant amyloid pathology was observed. Overall, our study provides evidence of altered GABAergic signaling in an amyloid model of AD at a time point consistent with AD-related deficits.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Receptores de GABA-B/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Memoria , Ratones Transgénicos , Neuroglía/metabolismo , Receptores de GABA-B/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Aprendizaje Espacial , Ácido gamma-Aminobutírico/metabolismo
3.
Clin Park Relat Disord ; 1: 25-30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34316595

RESUMEN

INTRODUCTION: Studies suggest that exercise may be neuroprotective when implemented before the clinical presentation of Parkinson's disease (PD). Levels of brain-derived neurotrophic factor (BDNF), theorized to play a role in neuroprotection, are affected by its genotype and exercise. Here we explore this previously unstudied interaction on age at diagnosis and severity of symptoms. METHODS: 76 participants with PD submitted buccal cells to determine BDNF genotype, completed the modified Lifetime Physical Activity Questionnaire to determine exercise habits, and were assessed using the Movement Disorder Society - Unified Parkinson's Disease Rating Scale III (MDS-UPDRS-III) and the Mini-Balance Evaluations Test (MBT). For aim 1 (age at diagnosis), 60 participants (age = 69.6 ±â€¯7.4; males = 45, females = 15) were analyzed. For aim 2 (severity of symptoms), 54 participants (age = 70.0 ±â€¯7.6; males = 41, females = 13) were analyzed. RESULTS: The final hierarchical regression model for age at diagnosis produced an R2 = 0.146, p = .033; however, the only significant variable in the final model was average moderate physical activity from ages 20s to 40s (p = .009). The regression for MDS-UPDRS III was not significant; however, the regression for MBT was, p = .0499. In the final model, 23.1% of the variance was explained. Years since diagnosis (p = .014) and average vigorous physical activity from ages 20s to 40s (p = .047) were the only predictors in the final model. CONCLUSIONS: While a strong interaction between BDNF genotype and lifetime physical activity was not observed, our results suggest that lifetime exercise may be neuroprotective in PD. Specifically, higher amounts of moderate PA were associated with an older age at diagnosis.

4.
J Neurol Phys Ther ; 43(1): 12-25, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30531382

RESUMEN

BACKGROUND AND PURPOSE: The feasibility, safety, and efficacy of a high-intensity multimodal exercise program (aerobic, strengthening, and balance training) have not been well vetted in persons with Parkinson disease (PD). Thus, the primary aim was to determine whether a high-intensity multimodal exercise boot camp (HIBC) was both feasible and safe in persons with PD. The secondary aim was to determine whether the program would produce greater benefit than a usual care, low-intensity exercise program (UC). An exploratory aim was to determine whether these programs affected putative disease-modifying mechanisms. METHODS: Twenty-seven participants (19 men and 8 women) were randomized into 8 weeks of either the HIBC or UC supervised by physical therapists. For feasibility, participation, and meeting, Centers for Disease Control and Prevention (CDC) exercise guidelines were assessed. For safety, adverse events were monitored. For efficacy, the following outcome domains were assessed before and after participation: balance, motor activity, endurance and fatigue, strength, mental health, and quality of life. For disease-modifying mechanisms, circulating brain-derived neurotrophic factor (BDNF) and its genotype, superoxide dismutase, and cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-10) were monitored. RESULTS: The HIBC was better at attaining CDC guidelines (P = 0.013) and spent more minutes in higher-intensity exercise per week (P < 0.001). There were no differences in adverse events (P = 0.419). The HIBC experienced significant improvements in 7/31 outcomes versus 3/31 in the UC arm. BDNF improved significantly for both groups from pre- to posttests (Ps ≤ 0.041) and an improved anti-inflammatory was observed for both groups. DISCUSSION AND CONCLUSIONS: A high-intensity multimodal exercise boot camp was feasible and safe in persons with PD. Compared with usual care, there were no differences in adverse events. Moreover, the high-intensity multimodal exercise program produced more improvement across more domains than usual care. Our results also suggest a possible link between improvement in outcomes and an improved anti-inflammatory milieu.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A244).


Asunto(s)
Terapia por Ejercicio/métodos , Evaluación de Procesos y Resultados en Atención de Salud , Enfermedad de Parkinson/terapia , Anciano , Factor Neurotrófico Derivado del Encéfalo/genética , Citocinas/sangre , Terapia por Ejercicio/efectos adversos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/genética
5.
Alzheimers Dement (N Y) ; 4: 575-590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30406177

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid ß plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.

6.
Neuropharmacology ; 137: 164-177, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29738850

RESUMEN

RATIONALE: Diabetes mellitus (DM) is a major risk factor for Alzheimer's disease and vascular dementia. Few animal models exist that focus on the metabolic contributions to dementia onset and progression. Thus, there is strong scientific rationale to explore the effects of streptozotocin (STZ), a diabetogenic compound, on vascular and inflammatory changes within the brain. OBJECTIVE AND METHODS: The present study was designed to evaluate the effect of staggered, low-dose administration of STZ on behavioral and cognitive deficits, neuroinflammation, tau pathology, and histopathological alterations related to dementia. RESULTS: Staggered administration (Days 1, 2, 3, 14, 15) of streptozotocin (40 mg/kg/mL) induced a diabetic-like state in mice, resulting in sustained hyperglycemia. STZ-treated animals displayed memory deficits in the novel object recognition task as well as increased tau phosphorylation and increased neuroinflammation. Additionally, STZ led to altered insulin signaling, exhibited by decreased plasma insulin and decreased levels of insulin degrading enzyme and pAKT within the hippocampus. CONCLUSIONS: STZ-treated animals exhibit cognitive deficits and histopathological changes seen in dementia. This model of dementia warrants continued investigation to better understand the role that DM plays in dementia-related alterations.


Asunto(s)
Enfermedad de Alzheimer/etiología , Demencia Vascular/etiología , Diabetes Mellitus Experimental/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Encéfalo/patología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/psicología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/psicología , Hemorragia/patología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hiperglucemia/psicología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Inflamación/psicología , Insulina/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Discapacidades para el Aprendizaje/patología , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones Endogámicos C57BL , Microvasos/patología , Estreptozocina/administración & dosificación , Proteínas tau/metabolismo
7.
J Neurol Phys Ther ; 42(2): 61-71, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29547479

RESUMEN

BACKGROUND AND PURPOSE: Because falls can have deleterious consequences, it is important to understand the influence of fatigue and medications on balance in persons with Parkinson disease (PD). Thus, the purpose of this study was to investigate the effects of fatigue on balance in individuals with PD. Because brain-derived neurotrophic factor (BDNF) has been shown to be related to motor performance, we also explored its role. METHODS: A total of 27 individuals (age = 65.4 ± 8.1 years; males = 14, females = 13) with neurologist-diagnosed PD with 13 genotyped for BDNF as Val66Val, 11 as Val66Met, 2 as Met66Met (1 refused). Participants were tested both on and off medication, 1 week apart. On both days, they completed a pre- and posttest separated by a fatiguing condition. Factorial analyses of variance were performed for the following balance domains: (1) anticipatory postural responses; (2) adaptive postural responses; (3) dynamic balance; (4) sensory orientation; and (5) gait kinematics. For BDNF, t-tests were conducted comparing genotype for the pre-post difference scores in both the on and off medication states. RESULTS: There were no interactions between time (pre- and postintervention) and medication for any of the domains (Ps ≥ 0.187). Participants with BDNF Met alleles were not significantly different from Val66Val participants in balance (Ps ≥ 0.111) and response to a fatiguing condition (Ps ≥ 0.070). DISCUSSION AND CONCLUSIONS: Fatigue does not appear to have a detrimental effect on balance, and there was not a differential effect of medication in individuals with PD. These results also indicate that participants with a BDNF Met allele did not have a greater decay in function after a fatiguing condition.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A196).


Asunto(s)
Antiparkinsonianos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Fatiga/fisiopatología , Enfermedad de Parkinson/fisiopatología , Equilibrio Postural/fisiología , Anciano , Fenómenos Biomecánicos/fisiología , Terapia por Ejercicio/métodos , Femenino , Marcha/fisiología , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Equilibrio Postural/efectos de los fármacos , Reproducibilidad de los Resultados
8.
Neuropharmacology ; 101: 110-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26327677

RESUMEN

Lipopolysaccharide (LPS) is often used to investigate the exacerbatory effects of an immune-related challenge in transgenic models of various neurodegenerative diseases. However, the effects of this inflammatory challenge in an insulin resistant brain state, as seen in diabetes mellitus, a major risk factor for both vascular dementia (VaD) and Alzheimer's disease (AD), is not as well characterized. We investigated the effects of an LPS-induced inflammatory challenge on behavioral and biological parameters following intracerebroventricular (ICV) injection of streptozotocin (STZ) in male Sprague-Dawley rats. Subjects received a one-time bilateral ICV infusion of STZ (25 mg/mL, 8 µL per ventricle) or ACSF. One week following ICV infusions, LPS (1 mg/mL, i.p.) or saline was administered to activate the immune system. Behavioral testing began on the 22nd day following STZ-ICV infusion, utilizing the open field and Morris water maze (MWM) tasks. Proteins related to immune function, learning and memory, synaptic plasticity, and key histopathological markers observed in VaD and AD were evaluated. The addition of an LPS-induced immune challenge partially attenuated spatial learning and memory deficits in the MWM in STZ-ICV injected animals. Additionally, LPS administration to STZ-treated animals partially mitigated alterations observed in several protein levels in STZ-ICV alone, including NR2A, GABA(B1), and ß-amyloid oligomers. These results suggest that an acute LPS-inflammatory response has a modest protective effect against some of the spatial learning and memory deficits and protein alterations associated with STZ-ICV induction of an insulin resistant brain state.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Estreptozocina/administración & dosificación , Péptidos beta-Amiloides/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Inyecciones Intraventriculares , Interleucina-6/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factores de Tiempo
9.
Int J Dev Neurosci ; 41: 17-27, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25314921

RESUMEN

The GABA transmitter system plays a vital role in modulating synaptic formation and activity during development. The GABAB receptor subtype in particular has been implicated in cell migration, promotion of neuronal differentiation, neurite outgrowth, and synapse formation but it's role in development is not well characterized. In order to investigate the effects of brief alterations in GABAB signaling in development, we administered to rats the GABAB agonist baclofen (2.0mg/kg) or antagonist phaclofen (0.3mg/kg) on postnatal days 7, 9, and 12, and evaluated sensorimotor gating in adulthood. We also examined tissue for changes in multiple proteins associated with GABAB receptor function and proteins associated with synapse formation. Our data indicate that early postnatal alterations to GABAB receptor-mediated signaling produced sex differences in sensorimotor gating in adulthood. Additionally, we found differences in GABAB receptor subunits and kalirin protein levels in the brain versus saline treated controls. Our data demonstrate that a subtle alteration in GABAB receptor function in early postnatal life induces changes that persist into adulthood.


Asunto(s)
Encéfalo/metabolismo , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/patología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología , Estimulación Acústica , Factores de Edad , Animales , Animales Recién Nacidos , Baclofeno/análogos & derivados , Baclofeno/toxicidad , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Antagonistas del GABA/toxicidad , Agonistas de Receptores GABA-B/toxicidad , Trastornos Neurológicos de la Marcha/inducido químicamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Embarazo , Inhibición Prepulso/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Filtrado Sensorial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Neurosci Lett ; 550: 69-74, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23827228

RESUMEN

The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be responsible for the disorder. Alterations in the GABAergic system have been observed in schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the etiology of schizophrenia. The current study examined the positioning and distribution of PV-positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist ketamine. A robust increase was found in the number of PV-positive interneurons located outside the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal distribution of PV-positive cells, which may be indicative of aberrant migratory activity and possibly related to the Morris water maze deficits observed. These findings may also be relevant to alterations observed in schizophrenia populations.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/administración & dosificación , Hipocampo/efectos de los fármacos , Ketamina/administración & dosificación , Neuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/metabolismo
11.
Neurobiol Learn Mem ; 98(3): 261-71, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23010137

RESUMEN

The investigation of GABAergic systems in learning and extinction has principally focused on ionotropic GABA(A) receptors. Less well characterized is the metabotropic GABA(B) receptor, which when activated, induces a more sustained inhibitory effect and has been implicated in regulating oscillatory activity. Few studies have been carried out utilizing GABA(B) ligands in learning, and investigations of GABA(B) in extinction have primarily focused on interactions with drugs of abuse. The current study examined changes in GABA(B) receptor function using the GABA(B) agonist baclofen (2 mg/mL) or the GABA(B) antagonist phaclofen (0.3 mg/mL) on trace cued and contextual fear conditioning and extinction. The compounds were either administered during training and throughout extinction in Experiment 1, or starting 24 h after training and throughout extinction in Experiment 2. All drugs were administered 1 mL/kg via intraperitoneal injection. These studies demonstrated that the administration of baclofen during training and extinction trials impaired animals' ability to extinguish the fear association to the CS, whereas the animals that were administered baclofen starting 24 h after training (Experiment 2) did display some extinction. Further, contextual fear extinction was impaired by baclofen in both experiments. Tissue analyses suggest the cued fear extinction deficit may be related to changes in the GABA(B2) receptor subunit in the amygdala. The data in the present investigation demonstrate that GABA(B) receptors play an important role in trace cued and contextual fear extinction, and may function differently than GABA(A) receptors in learning, memory, and extinction.


Asunto(s)
Baclofeno/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Agonistas de Receptores GABA-B/farmacología , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Baclofeno/análogos & derivados , Señales (Psicología) , Antagonistas del GABA/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos
12.
Physiol Behav ; 107(3): 355-63, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22974752

RESUMEN

Subanesthetic administration of the NMDA receptor antagonist ketamine has been suggested to have utility in several therapeutic domains; however, its recreational use has exceeded its therapeutic applications. Ketamine has been utilized to investigate NMDA receptor-mediated learning and memory and to model disorders such as schizophrenia. The utility of ketamine in relation to schizophrenia is based on a proposed mechanism of the disorder being associated with reduced NMDA receptor function within a subset of GABAergic neurons. The examination of ketamine with relevance to the above topics has produced valuable data; however, there exists a great deal of variability in the literature regarding dosage and timing of administration to examine ketamine-induced deficits. In the below experiments we sought to identify the minimal subanesthetic dosage and schedule of ketamine administrations that would produce behavioral deficits in multiple tasks with relevance to the above investigations. We evaluated sensorimotor gating as well as spatial learning and memory in the Morris water task utilizing different doses of ketamine. Our data indicate that an 8 mg/kg subcutaneous dose of ketamine was the minimal dose to produce impairments in both sensorimotor gating and spatial learning.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/toxicidad , Trastornos Neurológicos de la Marcha/inducido químicamente , Trastornos Neurológicos de la Marcha/diagnóstico , Ketamina/toxicidad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/diagnóstico , Estimulación Acústica/efectos adversos , Análisis de Varianza , Animales , Relación Dosis-Respuesta a Droga , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Pruebas Neuropsicológicas , Psicoacústica , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Filtrado Sensorial/efectos de los fármacos , Factores de Tiempo
13.
Int J Neurosci ; 122(12): 742-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22897394

RESUMEN

The neuropeptide galanin inhibits the evoked release of several neurotransmitters including acetylcholine and modulates adenylate cyclase (AC) activity. Galanin has also been established to impair various forms of learning and memory in rodents. However, whether galanin produces learning deficits by inhibiting cholinergic activity or decreasing AC function has not been clearly established. The current study investigated if donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, could rescue galanin-induced Morris water task deficits in rats. The results demonstrated that donepezil did not alter the previously established deficits induced by galanin. These findings suggest that galanin-mediated spatial learning deficits may be unrelated to its modulation of the cholinergic system.


Asunto(s)
Galanina/toxicidad , Indanos/uso terapéutico , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/tratamiento farmacológico , Nootrópicos/uso terapéutico , Piperidinas/uso terapéutico , Percepción Espacial/efectos de los fármacos , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Donepezilo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
14.
Behav Brain Res ; 233(1): 35-44, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22569573

RESUMEN

Alterations in N-methyl-D-aspartate (NMDA) receptor function have been linked to numerous behavioral deficits and neurochemical alterations. Recent investigations have begun to explore the role of NMDA receptor function on principally inhibitory neurons and their role in network function. One of the prevailing models of schizophrenia proposes a reduction in NMDA receptor function on inhibitory interneurons and the resulting disinhibition may give rise to aspects of the disorder. Studies using NMDA receptor antagonists such as PCP and ketamine have induced schizophrenia-like behavioral deficits in animal model systems as well as changes in inhibitory circuits. The current study investigated whether the administration of a subanesthetic dose of ketamine (8 mg/kg subcutaneously), that disrupts sensorimotor gating, also produces impairments in a Pavlovian emotional learning and memory task. We utilized both standard delay and trace cued and contextual fear conditioning (CCF) paradigms to examine if ketamine produces differential effects when the task is more difficult and relies on connectivity between specific brain regions. Rats administered ketamine displayed no significant deficits in cued or contextual fear following the delay conditioning protocol. However, ketamine did produce a significant impairment in the more difficult trace conditioning protocol. Analyses of tissue from the hippocampus and amygdala indicated that the administration of ketamine produced an alteration in GABA receptor protein levels differentially depending on the task. These data indicate that 8 mg/kg of ketamine impairs learning in the more difficult emotional classical conditioning task and may be related to altered signaling in GABAergic systems.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Discapacidades para el Aprendizaje/etiología , Trastornos de la Memoria/etiología , Esquizofrenia/complicaciones , Análisis de Varianza , Animales , Encéfalo/metabolismo , Encéfalo/patología , Condicionamiento Clásico/efectos de los fármacos , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/toxicidad , Miedo/efectos de los fármacos , Suspensión Trasera , Ketamina/toxicidad , Masculino , Fenciclidina/toxicidad , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptores de GABA-B/metabolismo , Esquizofrenia/inducido químicamente , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...