Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Gut Pathog ; 16(1): 2, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178245

RESUMEN

BACKGROUND: The non-pharmaceutical interventions (NPIs) implemented to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic, substantially disrupted the activity of other respiratory viruses. However, there is limited data from low-and-middle income countries (LMICs) to determine whether these NPIs also impacted the transmission of common enteric viruses. Here, we investigated the changes in the positivity rate of five enteric viruses among hospitalised children who presented with diarrhoea to a referral hospital in coastal Kenya, during COVID-19 pandemic period. METHODS: A total of 870 stool samples from children under 13 years of age admitted to Kilifi County Hospital between January 2019, and December 2022 were screened for rotavirus group A (RVA), norovirus genogroup II (GII), astrovirus, sapovirus, and adenovirus type F40/41 using real-time reverse-transcription polymerase chain reaction. The proportions positive across the four years were compared using the chi-squared test statistic. RESULTS: One or more of the five virus targets were detected in 282 (32.4%) cases. A reduction in the positivity rate of RVA cases was observed from 2019 (12.1%, 95% confidence interval (CI) 8.7-16.2%) to 2020 (1.7%, 95% CI 0.2-6.0%; p < 0.001). However, in the 2022, RVA positivity rate rebounded to 23.5% (95% CI 18.2%-29.4%). For norovirus GII, the positivity rate fluctuated over the four years with its highest positivity rate observed in 2020 (16.2%; 95% C.I, 10.0-24.1%). No astrovirus cases were detected in 2020 and 2021, but the positivity rate in 2022 was similar to that in 2019 (3.1% (95% CI 1.5%-5.7%) vs. 3.3% (95% CI 1.4-6.5%)). A higher case fatality rate was observed in 2021 (9.0%) compared to the 2019 (3.2%), 2020 (6.8%) and 2022 (2.1%) (p < 0.001). CONCLUSION: Our study finds that in 2020 the transmission of common enteric viruses, especially RVA and astrovirus, in Kilifi Kenya may have been disrupted due to the COVID-19 NPIs. After 2020, local enteric virus transmission patterns appeared to return to pre-pandemic levels coinciding with the removal of most of the government COVID-19 NPIs.

2.
Emerg Infect Dis ; 29(11): 2376-2379, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708843

RESUMEN

We report a newly emerged SARS-CoV-2 Omicron subvariant FY.4 that has mutations Y451H in spike and P42L in open reading frame 3a proteins. FY.4 emergence coincided with increased SARS-CoV-2 cases in coastal Kenya during April-May 2023. Continued SARS-CoV-2 genomic surveillance is needed to identify new lineages to inform COVID-19 outbreak prevention.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Kenia/epidemiología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
3.
Influenza Other Respir Viruses ; 17(9): e13185, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37752066

RESUMEN

BACKGROUND: We estimated the secondary attack rate of SARS-CoV-2 among household contacts of PCR-confirmed cases of COVID-19 in rural Kenya and analysed risk factors for transmission. METHODS: We enrolled incident PCR-confirmed cases and their household members. At baseline, a questionnaire, a blood sample, and naso-oropharyngeal swabs were collected. Household members were followed 4, 7, 10, 14, 21 and 28 days after the date of the first PCR-positive in the household; naso-oropharyngeal swabs were collected at each visit and used to define secondary cases. Blood samples were collected every 1-2 weeks. Symptoms were collected in a daily symptom diary. We used binomial regression to estimate secondary attack rates and survival analysis to analyse risk factors for transmission. RESULTS: A total of 119 households with at least one positive household member were enrolled between October 2020 and September 2022, comprising 503 household members; 226 remained in follow-up at day 14 (45%). A total of 43 secondary cases arose within 14 days of identification of the primary case, and 81 household members remained negative. The 7-day secondary attack rate was 4% (95% CI 1%-10%), the 14-day secondary attack rate was 28% (95% CI 17%-40%). Of 38 secondary cases with data, eight reported symptoms (21%, 95% CI 8%-34%). Antibody to SARS-CoV-2 spike protein at enrolment was not associated with risk of becoming a secondary case. CONCLUSION: Households in our setting experienced a lower 7-day attack rate than a recent meta-analysis indicated as the global average (23%-43% depending on variant), and infection is mostly asymptomatic in our setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Incidencia , Kenia/epidemiología , Estudios Prospectivos , Prevalencia
4.
Wellcome Open Res ; 8: 154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502177

RESUMEN

Background: Maternal respiratory syncytial virus (RSV) vaccines that are likely to be implementable in low- and middle-income countries (LMICs) are in final stages of clinical trials. Data on the number of women presenting for antenatal care (ANC) per day and proportion attending within the proposed gestational window for vaccine delivery, is a prerequisite to guide development of vaccine vial size and inform vaccine uptake in this setting. Methods: We undertook administrative review and abstraction of ANC attendance records from 2019 registers of 24 selected health facilities, stratified by the level of care, from Kilifi, Siaya and Nairobi counties in Kenya. Additional data were obtained from Mother and Child Health (MCH) booklets of women in each of the Health and Demographic Surveillance System (HDSS) areas of Kilifi, Nairobi and Siaya. Data analysis involved descriptive summaries of the number (mean, median) and proportion of women attending ANC within the gestational window period of 28-32 weeks and 24-36 weeks. Results: A total of 62,153 ANC records were abstracted, 33,872 from Kilifi, 19,438 from Siaya and 8,943 from Nairobi Counties. The median (Interquartile range, IQR) number of women attending ANC per day at a gestational age window of 28-32 and 24-36 weeks, respectively, were: 4 (2-6) and 7 (4-12) in dispensaries, 5 (2-9) and 10 (4-19) in health centres and 6 (4-11) and 16 (10-26) in county referral hospitals. In the HDSS areas of Kilifi, Siaya and Nairobi, pregnant women attending at least one ANC visit, within a window of 28-32 weeks, were: 77% (360/470), 75% (590/791) and 67% (547/821), respectively. Conclusions: About 70% of pregnant women across three distinct geographical regions in Kenya, attend ANC within 28-32 weeks of gestation. A multidose vial size with about five doses per vial, approximates daily ANC attendance and would not incur possible wastage in similar settings.

5.
Virus Evol ; 9(1): vead025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207000

RESUMEN

The introduction of rotavirus vaccines into the national immunization programme in many countries has led to a decline in childhood diarrhoea disease burden. Coincidentally, the incidence of some rotavirus group A (RVA) genotypes has increased, which may result from non-vaccine-type replacement. Here, we investigate the evolutionary genomics of rotavirus G2P[4] which has shown an increase in countries that introduced the monovalent Rotarix® vaccine. We examined sixty-three RVA G2P[4] strains sampled from children (aged below 13 years) admitted to Kilifi County Hospital, coastal Kenya, pre- (2012 to June 2014) and post-(July 2014 to 2018) rotavirus vaccine introduction. All the sixty-three genome sequences showed a typical DS-1-like genome constellation (G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2). Pre-vaccine G2 sequences predominantly classified as sub-lineage IVa-3 and co-circulated with low numbers of sub-lineage IVa-1 strains, whereas post-vaccine G2 sequences mainly classified into sub-lineage IVa-3. In addition, in the pre-vaccine period, P[4] sub-lineage IVa strains co-circulated with low numbers of P[4] lineage II strains, but P[4] sub-lineage IVa strains predominated in the post-vaccine period. On the global phylogeny, the Kenyan pre- and post-vaccine G2P[4] strains clustered separately, suggesting that different virus populations circulated in the two periods. However, the strains from both periods exhibited conserved amino acid changes in the known antigenic epitopes, suggesting that replacement of the predominant G2P[4] cluster was unlikely a result of immune escape. Our findings demonstrate that the pre- and post-vaccine G2P[4] strains circulating in Kilifi, coastal Kenya, differed genetically but likely were antigenically similar. This information informs the discussion on the consequences of rotavirus vaccination on rotavirus diversity.

6.
Virus Evol ; 9(1): vead023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066020

RESUMEN

Human enteric adenovirus species F (HAdV-F) is a leading cause of childhood diarrhoeal deaths. The genomic analysis would be key to understanding transmission dynamics, potential drivers of disease severity, and vaccine development. However, currently, there are limited HAdV-F genomic data globally. Here, we sequenced and analysed HAdV-F from stool samples collected in coastal Kenya between 2013 and 2022. The samples were collected at Kilifi County Hospital in coastal Kenya from children <13 years of age who reported a history of three or more loose stools in the previous 24 hours. The genomes were analysed together with the data from the rest of the world by phylogenetic analysis and mutational profiling. Types and lineages were assigned based on phylogenetic clustering consistent with the previously described criteria and nomenclature. Participant clinical and demographic data were linked to genotypic data. Of ninety-one cases identified using real-time Polymerase Chain Reaction, eighty-eight near-complete genomes were assembled, and these were classified into HAdV-F40 (n = 41) and HAdV-F41 (n = 47). These types co-circulated throughout the study period. Three and four distinct lineages were observed for HAdV-F40 (Lineages 1-3) and HAdV-F41 (Lineages 1, 2A, 3A, 3C, and 3D). Types F40 and F41 coinfections were observed in five samples and F41 and B7 in one sample. Two children with F40 and 41 coinfections were also infected with rotavirus and had moderate and severe diseases as defined using the Vesikari Scoring System, respectively. Intratypic recombination was found in four HAdV-F40 sequences occurring between Lineages 1 and 3. None of the HAdV-F41 cases had jaundice. This study provides evidence of extensive genetic diversity, coinfections, and recombination within HAdV-F40 in a rural coastal Kenya that will inform public health policy, vaccine development that includes the locally circulating lineages, and molecular diagnostic assay development. We recommend future comprehensive studies elucidating on HAdV-F genetic diversity and immunity for rational vaccine development.

7.
BMC Med ; 21(1): 122, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004034

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is among the leading childhood causes of viral pneumonia worldwide. Establishing RSV-associated morbidity and mortality is important in informing the development, delivery strategies, and evaluation of interventions. METHODS: Using data collected during 2010-2018 from base regions (population-based surveillance studies in western Kenya and the Kilifi Health and Demographic Surveillance Study), we estimated age-specific rates of acute respiratory illness (ARI), severe acute respiratory illness (SARI-defined as hospitalization with cough or difficulty breathing with onset within the past 10 days), and SARI-associated deaths. We extrapolated the rates from the base regions to other regions of Kenya, while adjusting for risk factors of ARI and healthcare seeking behavior, and finally applied the proportions of RSV-positive cases identified from various sentinel and study facilities to the rates to obtain regional age-specific rates of RSV-associated outpatient and non-medically attended ARI and hospitalized SARI and severe ARI that was not hospitalized (non-hospitalized SARI). We applied age-specific RSV case fatality ratios to SARI to obtain estimates of RSV-associated in- and out-of-hospital deaths. RESULTS: Among Kenyan children aged < 5 years, the estimated annual incidence of outpatient and non-medically attended RSV-associated ARI was 206 (95% credible interval, CI; 186-229) and 226 (95% CI; 204-252) per 1000 children, respectively. The estimated annual rates of hospitalized and non-hospitalized RSV-associated SARI were 349 (95% CI; 303-404) and 1077 (95% CI; 934-1247) per 100,000 children respectively. The estimated annual number of in- and out-of-hospital deaths associated with RSV infection in Kenya were 539 (95% CI; 420-779) and 1921 (95% CI; 1495-2774), respectively. Children aged < 6 months had the highest burden of RSV-associated severe disease: 2075 (95% CI; 1818-2394) and 44 (95% CI 25-71) cases per 100,000 children for hospitalized SARI and in-hospital deaths, respectively. CONCLUSIONS: Our findings suggest a substantial disease burden due to RSV infection, particularly among younger children. Prioritizing development and use of maternal vaccines and affordable long-lasting monoclonal antibodies could help reduce this burden.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Kenia/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Hospitalización , Vigilancia de la Población , Infecciones del Sistema Respiratorio/epidemiología
8.
Npj Viruses ; 1(1): 6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665239

RESUMEN

Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40 types), cumulatively representing >90% of all known RV types. Notably, RV diversity correlated directly with the size of the population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies. Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures.

9.
PLoS One ; 17(11): e0278066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36441757

RESUMEN

Respiratory syncytial virus (RSV) causes significant childhood morbidity and mortality in the developing world. The determinants of RSV seasonality are of importance in designing interventions. They are poorly understood in tropical and sub-tropical regions in low- and middle-income countries. Our study utilized long-term surveillance data on cases of RSV associated with severe or very severe pneumonia in children aged 1 day to 59 months admitted to the Kilifi County Hospital. A generalized additive model was used to investigate the association between RSV admissions and meteorological variables (maximum temperature, rainfall, absolute humidity); weekly number of births within the catchment population; and school term dates. Furthermore, a time-series-susceptible-infected-recovered (TSIR) model was used to reconstruct an empirical transmission rate which was used as a dependent variable in linear regression and generalized additive models with meteorological variables and school term dates. Maximum temperature, absolute humidity, and weekly number of births were significantly associated with RSV activity in the generalized additive model. Results from the TSIR model indicated that maximum temperature and absolute humidity were significant factors. Rainfall and school term did not yield significant relationships. Our study indicates that meteorological parameters and weekly number of births potentially play a role in the RSV seasonality in this region. More research is required to explore the underlying mechanisms underpinning the observed relationships.


Asunto(s)
Epidemias , Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Kenia/epidemiología , Estaciones del Año , Hospitalización
10.
Gut Pathog ; 14(1): 32, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915480

RESUMEN

BACKGROUND: Kenya introduced Rotarix® (GlaxoSmithKline Biologicals, Rixensart, Belgium) vaccination into its national immunization programme beginning July 2014. The impact of this vaccination program on the local epidemiology of various known enteropathogens is not fully understood. METHODS: We used a custom TaqMan Array Card (TAC) to screen for 28 different enteropathogens in 718 stools from children aged less than 13 years admitted to Kilifi County Hospital, coastal Kenya, following presentation with diarrhea in 2013 (before vaccine introduction) and in 2016-2018 (after vaccine introduction). Pathogen positivity rate differences between pre- and post-Rotarix® vaccination introduction were examined using both univariate and multivariable logistic regression models. RESULTS: In 665 specimens (92.6%), one or more enteropathogen was detected, while in 323 specimens (48.6%) three or more enteropathogens were detected. The top six detected enteropathogens were: enteroaggregative Escherichia coli (EAggEC; 42.1%), enteropathogenic Escherichia coli (EPEC; 30.2%), enterovirus (26.9%), rotavirus group A (RVA; 24.8%), parechovirus (16.6%) and norovirus GI/GII (14.4%). Post-rotavirus vaccine introduction, there was a significant increase in the proportion of samples testing positive for EAggEC (35.7% vs. 45.3%, p = 0.014), cytomegalovirus (4.2% vs. 9.9%, p = 0.008), Vibrio cholerae (0.0% vs. 2.3%, p = 0.019), Strongyloides species (0.8% vs. 3.6%, p = 0.048) and Dientamoeba fragilis (2.1% vs. 7.8%, p = 0.004). Although not reaching statistical significance, the positivity rate of adenovirus 40/41 (5.8% vs. 7.3%, p = 0.444), norovirus GI/GII (11.2% vs. 15.9%, p = 0.089), Shigella species (8.7% vs. 13.0%, p = 0.092) and Cryptosporidium spp. (11.6% vs. 14.7%, p = 0.261) appeared to increase post-vaccine introduction. Conversely, the positivity rate of sapovirus decreased significantly post-vaccine introduction (7.8% vs. 4.0%, p = 0.030) while that of RVA appeared not to change (27.4% vs. 23.5%, p = 0.253). More enteropathogen coinfections were detected per child post-vaccine introduction compared to before (mean: 2.7 vs. 2.3; p = 0.0025). CONCLUSIONS: In this rural Coastal Kenya setting, childhood enteropathogen infection burden was high both pre- and post-rotavirus vaccination introduction. Children who had diarrheal admissions post-vaccination showed an increase in coinfections and changes in specific enteropathogen positivity rates. This study highlights the utility of multipathogen detection platforms such as TAC in understanding etiology of childhood acute gastroenteritis in resource-limited regions.

11.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746789

RESUMEN

Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , SARS-CoV-2/genética , Seychelles/epidemiología
12.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699426

RESUMEN

Background: Detailed understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) regional transmission networks within sub-Saharan Africa is key for guiding local public health interventions against the pandemic. Methods: Here, we analysed 1139 SARS-CoV-2 genomes from positive samples collected between March 2020 and February 2021 across six counties of Coastal Kenya (Mombasa, Kilifi, Taita Taveta, Kwale, Tana River, and Lamu) to infer virus introductions and local transmission patterns during the first two waves of infections. Virus importations were inferred using ancestral state reconstruction, and virus dispersal between counties was estimated using discrete phylogeographic analysis. Results: During Wave 1, 23 distinct Pango lineages were detected across the six counties, while during Wave 2, 29 lineages were detected; 9 of which occurred in both waves and 4 seemed to be Kenya specific (B.1.530, B.1.549, B.1.596.1, and N.8). Most of the sequenced infections belonged to lineage B.1 (n = 723, 63%), which predominated in both Wave 1 (73%, followed by lineages N.8 [6%] and B.1.1 [6%]) and Wave 2 (56%, followed by lineages B.1.549 [21%] and B.1.530 [5%]). Over the study period, we estimated 280 SARS-CoV-2 virus importations into Coastal Kenya. Mombasa City, a vital tourist and commercial centre for the region, was a major route for virus imports, most of which occurred during Wave 1, when many Coronavirus Disease 2019 (COVID-19) government restrictions were still in force. In Wave 2, inter-county transmission predominated, resulting in the emergence of local transmission chains and diversity. Conclusions: Our analysis supports moving COVID-19 control strategies in the region from a focus on international travel to strategies that will reduce local transmission. Funding: This work was funded by The Wellcome (grant numbers: 220985, 203077/Z/16/Z, 220977/Z/20/Z, and 222574/Z/21/Z) and the National Institute for Health and Care Research (NIHR), project references: 17/63/and 16/136/33 using UK Aid from the UK government to support global health research, The UK Foreign, Commonwealth and Development Office. The views expressed in this publication are those of the author(s) and not necessarily those of the funding agencies.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , Kenia/epidemiología , Filogenia , Estudios Retrospectivos , SARS-CoV-2/genética
13.
Wellcome Open Res ; 7: 69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505772

RESUMEN

Background: There are limited studies in Africa describing the epidemiology, clinical characteristics and serostatus of individuals tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We tested routine samples from the Coastal part of Kenya between 17 th March 2020 and 30 th June 2021. Methods: SARS-CoV-2 infections identified using reverse transcription polymerase chain reaction (RT-PCR) and clinical surveillance data at the point of sample collection were used to classify as either symptomatic or asymptomatic. IgG antibodies were measured in sera samples, using a well validated in-house enzyme-linked immunosorbent assay (ELISA). Results: Mombasa accounted for 56.2% of all the 99,694 naso-pharyngeal/oro-pharyngeal swabs tested, and males constituted the majority tested (73.4%). A total of 7737 (7.7%) individuals were SARS-CoV-2 positive by RT-PCR. The majority (i.e., 92.4%) of the RT-PCR positive individuals were asymptomatic. Testing was dominated by mass screening and travellers, and even at health facility level 91.6% of tests were from individuals without symptoms. Out of the 97,124 tests from asymptomatic individuals 7,149 (7%) were positive and of the 2,568 symptomatic individuals 588 (23%) were positive. In total, 2458 serum samples were submitted with paired naso-pharyngeal/oro-pharyngeal samples and 45% of the RT-PCR positive samples and 20% of the RT-PCR negative samples were paired with positive serum samples. Symptomatic individuals had significantly higher antibody levels than asymptomatic individuals and become RT-PCR negative on repeat testing earlier than asymptomatic individuals. Conclusions: In conclusion, the majority of SARS-CoV-2 infections identified by routine testing in Coastal Kenya were asymptomatic. This reflects the testing practice of health services in Kenya, but also implies that asymptomatic infection is very common in the population. Symptomatic infection may be less common, or it may be that individuals do not present for testing when they have symptoms.

14.
Wellcome Open Res ; 7: 43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402734

RESUMEN

Background: Maternal immunisation to boost respiratory syncytial virus (RSV) antibodies in pregnant women, is a strategy being considered to enhance infant protection from severe RSV associated disease. However, little is known about the efficiency of transplacental transfer of RSV-specific antibodies in a setting with a high burden of malaria and HIV, to guide the implementation of such a vaccination program. Methods: Using a plaque reduction neutralization assay, we screened 400 pairs of cord and maternal serum specimens from pregnant women for RSV-specific antibodies. Participants were pregnant women of two surveillance cohorts: 200 participants from a hospital cohort in Kilifi, Coastal Kenya and 200 participants from a surveillance cohort in Siaya, Western Kenya. Transplacental transfer efficiency was determined by the cord to maternal transfer ratio (CMTR). Logistic regression was used to determine independent predictors of impaired transplacental transfer of RSV-specific antibodies. Results: A total of 800 samples were screened from the 400 participants. At enrollment the median age was 25 years (Interquartile range (IQR): 21-31). Overall, transplacental transfer was efficient and did not differ between Kilifi and Siaya cohort (1.02 vs. 1.02; p=0.946) but was significantly reduced among HIV-infected mothers compared to HIV-uninfected mothers (mean CMTR: 0.98 vs 1.03; p=0.015). Prematurity <33 weeks gestation (Odds ratio [OR]: 0.23, 95% confidence interval [CI] 0.06-0.85; p=0.028), low birth weight <2.5 kgs (OR: 0.25, 95% CI: 0.07-0.94; p=0.041) and HIV infection (OR: 0.47, 95% CI:0.23-0.98; p=0.045) reduced efficiency of transplacental transfer among these women. Conclusions: Transplacental transfer of RSV-specific antibodies among pregnant women in Kenya is efficient. A consideration to integrate other preventive interventions with maternal RSV vaccination targeting infants born premature (<33 weeks gestation), with low birth weight <2.5 kgs, or HIV-infected mothers is likely to improve vaccine outcomes in this setting.

15.
Front Med (Lausanne) ; 9: 836728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252269

RESUMEN

INTRODUCTION: The ARTIC Network's primer set and amplicon-based protocol is one of the most widely used SARS-CoV-2 sequencing protocol. An update to the V3 primer set was released on 18th June 2021 to address amplicon drop-off observed among the Delta variant of concern. Here, we report on an in-house optimization of a modified version of the ARTIC Network V4 protocol that improves SARS-CoV-2 genome recovery in instances where the original V4 pooling strategy was characterized by amplicon drop-offs. METHODS: We utilized a matched set of 43 clinical samples and serially diluted positive controls that were amplified by ARTIC V3, V4 and optimized V4 primers and sequenced using GridION from the Oxford Nanopore Technologies'. RESULTS: We observed a 0.5% to 46% increase in genome recovery in 67% of the samples when using the original V4 pooling strategy compared to the V3 primers. Amplicon drop-offs at primer positions 23 and 90 were observed for all variants and positive controls. When using the optimized protocol, we observed a 60% improvement in genome recovery across all samples and an increase in the average depth in amplicon 23 and 90. Consequently, ≥95% of the genome was recovered in 72% (n = 31) of the samples. However, only 60-70% of the genomes could be recovered in samples that had <28% genome coverage with the ARTIC V3 primers. There was no statistically significant (p > 0.05) correlation between Ct value and genome recovery. CONCLUSION: Utilizing the ARTIC V4 primers, while increasing the primer concentrations for amplicons with drop-offs or low average read-depth, greatly improves genome recovery of Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-2 variants.

16.
Science ; 374(6570): 989-994, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618602

RESUMEN

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or infection spreads to susceptible subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socioeconomic and urban­rural population structure are critical determinants of viral transmission in Kenya.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Control de Enfermedades Transmisibles , Epidemias , Humanos , Incidencia , Kenia/epidemiología , Modelos Biológicos , Estudios Seroepidemiológicos , Clase Social , Factores Socioeconómicos
17.
Open Forum Infect Dis ; 8(12): ofab571, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34988244

RESUMEN

BACKGROUND: Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited. METHODS: Here, we analyzed 1070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya coast. The samples were collected between 2007 and 2018 from hospitalized pediatric patients (<60 months of age) with acute respiratory illness. RESULTS: Of 7231 children enrolled, RV was detected in 1497 (20.7%) and VP4/VP2 sequences were recovered from 1070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B, and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types, multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (1) persistent types (observed up to 7 consecutive months), (2) reintroduced genetically distinct variants, and (3) new invasions (average of 8 new types annually). CONCLUSIONS: Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants.

18.
Influenza Other Respir Viruses ; 15(2): 195-201, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33305543

RESUMEN

Understanding respiratory syncytial virus (RSV) circulation patterns is necessary to guide the timing of limited-duration interventions such as vaccines. We describe RSV circulation over multiple seasons in three distinct counties of Kenya during 2006-2018. Kilifi and Siaya counties each had consistent but distinct RSV seasonality, lasting on average 18-22 weeks. Based on data from available years, RSV did not have a clear pattern of circulation in Nairobi. This information can help guide the timing of vaccines and immunoprophylaxis products that are under development.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Kenia/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estaciones del Año
19.
Pathogens ; 9(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255256

RESUMEN

Globally, rotavirus group A (RVA) remains a major cause of severe childhood diarrhea, despite the use of vaccines in more than 100 countries. RVA sequencing for local outbreaks facilitates investigation into strain composition, origins, spread, and vaccine failure. In 2018, we collected 248 stool samples from children aged less than 13 years admitted with diarrheal illness to Kilifi County Hospital, coastal Kenya. Antigen screening detected RVA in 55 samples (22.2%). Of these, VP7 (G) and VP4 (P) segments were successfully sequenced in 48 (87.3%) and phylogenetic analysis based on the VP7 sequences identified seven genetic clusters with six different GP combinations: G3P[8], G1P[8], G2P[4], G2P[8], G9P[8] and G12P[8]. The G3P[8] strains predominated the season (n = 37, 67.2%) and comprised three distinct G3 genetic clusters that fell within Lineage I and IX (the latter also known as equine-like G3 Lineage). Both the two G3 lineages have been recently detected in several countries. Our study is the first to document African children infected with G3 Lineage IX. These data highlight the global nature of RVA transmission and the importance of increasing global rotavirus vaccine coverage.

20.
Sci Rep ; 10(1): 21176, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273687

RESUMEN

Respiratory syncytial virus (RSV) is recognised as a leading cause of severe acute respiratory disease and deaths among infants and vulnerable adults. Clinical RSV isolates can be divided into several known genotypes. RSV genotype BA, characterised by a 60-nucleotide duplication in the G glycoprotein gene, emerged in 1999 and quickly disseminated globally replacing other RSV group B genotypes. Continual molecular epidemiology is critical to understand the evolutionary processes maintaining the success of the BA viruses. We analysed 735 G gene sequences from samples collected from paediatric patients in Kilifi, Kenya, between 2003 and 2017. The virus population comprised of several genetically distinct variants (n = 56) co-circulating within and between epidemics. In addition, there was consistent seasonal fluctuations in relative genetic diversity. Amino acid changes increasingly accumulated over the surveillance period including two residues (N178S and Q180R) that mapped to monoclonal antibody 2D10 epitopes, as well as addition of putative N-glycosylation sequons. Further, switching and toggling of amino acids within and between epidemics was observed. On a global phylogeny, the BA viruses from different countries form geographically isolated clusters suggesting substantial localized variants. This study offers insights into longitudinal population dynamics of a globally endemic RSV genotype within a discrete location.


Asunto(s)
Evolución Biológica , Virus Sincitial Respiratorio Humano/genética , Secuencia de Aminoácidos , Secuencia Conservada , Epidemias , Variación Genética , Genotipo , Glicosilación , Humanos , Kenia/epidemiología , Cadenas de Markov , Filogenia , Dominios Proteicos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...