Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38567730

RESUMEN

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Plásmidos , Rec A Recombinasas , Plásmidos/genética , Escherichia coli/genética , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Recombinación Genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasa V/genética , ADN Bacteriano/metabolismo , Elementos Transponibles de ADN/genética , Enzimas de Restricción del ADN , Proteínas de Unión al ADN
2.
Sci Adv ; 8(47): eabn8650, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427302

RESUMEN

CRISPR-Cas systems provide prokaryotes with adaptive immunity against foreign nucleic acids. In Escherichia coli, immunity is acquired upon integration of 33-bp spacers into CRISPR arrays. DNA targets complementary to spacers get degraded and serve as a source of new spacers during a process called primed adaptation. Precursors of such spacers, prespacers, are ~33-bp double-stranded DNA fragments with a ~4-nt 3' overhang. The mechanism of prespacer generation is not clear. Here, we use FragSeq and biochemical approaches to determine enzymes involved in generation of defined prespacer ends. We demonstrate that RecJ is the main exonuclease trimming 5' ends of prespacer precursors, although its activity can be partially substituted by ExoVII. The RecBCD complex allows single strand-specific RecJ to process double-stranded regions flanking prespacers. Our results reveal intricate functional interactions of genome maintenance proteins with CRISPR interference and adaptation machineries during generation of prespacers capable of integration into CRISPR arrays.

3.
Nat Commun ; 13(1): 4524, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927234

RESUMEN

Bacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, colocalization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched upstream (within up to 12-15 kb) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP:EcTopoI interaction by either overexpression of EcTopoI competitor (CTD or inactive EcTopoI Y319F mutant) or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, uncoupling of the RNAP:EcTopoI interaction leads to R-loops accumulation genome-wide, indicating that this interaction is required for prevention of R-loops formation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , ADN-Topoisomerasas de Tipo I/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estructuras R-Loop , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035168

RESUMEN

For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease-helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1-Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1-Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.


Asunto(s)
ADN Helicasas/metabolismo , Endonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas CRISPR-Cas
5.
Biochemistry (Mosc) ; 86(4): 449-470, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33941066

RESUMEN

Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). The constant threat of phage infection is a major force that shapes evolution of microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering had been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection. In the first part defense associated with cell surface, roles of small molecules, and innate immunity systems relying on DNA modification were discussed. The second part focuses on adaptive immunity systems, abortive infection mechanisms, defenses associated with mobile genetic elements, and novel systems discovered in recent years through metagenomic mining.


Asunto(s)
Archaea/virología , Bacterias/virología , Bacteriófagos/fisiología , Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Archaea/genética , Archaea/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos
6.
Biochemistry (Mosc) ; 86(3): 319-337, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838632

RESUMEN

Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.


Asunto(s)
Archaea/virología , Bacterias/virología , Bacteriófagos , Archaea/genética , Archaea/metabolismo , Archaea/fisiología , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Sistemas CRISPR-Cas , Interacciones Microbiota-Huesped
7.
Nucleic Acids Res ; 48(21): 12297-12309, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152077

RESUMEN

CRISPR-Cas defense systems opened up the field of genome editing due to the ease with which effector Cas nucleases can be programmed with guide RNAs to access desirable genomic sites. Type II-A SpCas9 from Streptococcus pyogenes was the first Cas9 nuclease used for genome editing and it remains the most popular enzyme of its class. Nevertheless, SpCas9 has some drawbacks including a relatively large size and restriction to targets flanked by an 'NGG' PAM sequence. The more compact Type II-C Cas9 orthologs can help to overcome the size limitation of SpCas9. Yet, only a few Type II-C nucleases were fully characterized to date. Here, we characterized two Cas9 II-C orthologs, DfCas9 from Defluviimonas sp.20V17 and PpCas9 from Pasteurella pneumotropica. Both DfCas9 and PpCas9 cleave DNA in vitro and have novel PAM requirements. Unlike DfCas9, the PpCas9 nuclease is active in human cells. This small nuclease requires an 'NNNNRTT' PAM orthogonal to that of SpCas9 and thus potentially can broaden the range of Cas9 applications in biomedicine and biotechnology.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Bacteriano , Pasteurella pneumotropica/genética , ARN Guía de Kinetoplastida/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica/métodos , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Conformación de Ácido Nucleico , Pasteurella pneumotropica/enzimología , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacteraceae/enzimología , Rhodobacteraceae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
RNA Biol ; 17(10): 1472-1479, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32564655

RESUMEN

Cas12e proteins (formerly CasX) form a distinct subtype of Class II type V CRISPR-Cas effectors. Recently, it was shown that DpbCas12e from Deltaproteobacteria and PlmCas12e from Planctomycetes can introduce programmable double-stranded breaks in mammalian genomes. Thus, along with Cas9 and Cas12a Class II effectors, Cas12e could be harnessed for genome editing and engineering. The location of cleavage points in DNA targets is important for application of Cas nucleases in biotechnology. DpbCas12e was reported to produce extensive 5'-overhangs at cleaved targets, which can make it superior for some applications. Here, we used high throughput sequencing to precisely map the DNA cut site positions of DpbCas12e on several DNA targets. In contrast to previous observations, our results demonstrate that DNA cleavage pattern of Cas12e is very similar to that of Cas12a: DpbCas12e predominantly cleaves DNA after nucleotide position 17-19 downstream of PAM in the non-target DNA strand, and after the 22nd position of target strand, producing 3-5 nucleotide-long 5'-overhangs. We also show that reduction of spacer sgRNA sequence from 20nt to 16nt shifts Cas12e cleavage positions on the non-target DNA strand closer to the PAM, producing longer 6-8nt 5'-overhangs. Overall, these findings advance the understanding of Cas12e endonucleases and may be useful for developing of DpbCas12e-based biotechnology instruments.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , División del ARN , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Sitios de Unión , Biología Computacional/métodos , Edición Génica , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes
9.
Nucleic Acids Res ; 48(4): 2026-2034, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31943070

RESUMEN

Type II CRISPR-Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas/genética , Clostridium cellulolyticum/enzimología , ADN/química , Proteína 9 Asociada a CRISPR/genética , Cristalografía por Rayos X , ADN/genética , Edición Génica , Mutación , Motivos de Nucleótidos/genética , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes/enzimología , Especificidad por Sustrato
10.
Mol Microbiol ; 111(6): 1558-1570, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875129

RESUMEN

CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR-Cas systems, protospacer recognition can lead to «primed adaptation¼ - acquisition of new spacers from in cis located sequences. Type I CRISPR-Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference. Here, we investigated the ability of each of 64 possible trinucleotides located at the PAM position to induce CRISPR interference and primed adaptation by the Escherichia coli Type I-E CRISPR-Cas system. We observed clear separation of PAM variants into three groups: those unable to cause interference, those that support rapid interference and those that lead to reduced interference that occurs over extended periods of time. PAM variants unable to support interference also did not support primed adaptation; those that supported rapid interference led to no or low levels of adaptation, while those that caused attenuated levels of interference consistently led to highest levels of adaptation. The results suggest that primed adaptation is fueled by the products of CRISPR interference. Extended over time interference with targets containing «attenuated¼ PAM variants provides a continuous source of new spacers leading to high overall level of spacer acquisition.


Asunto(s)
Sistemas CRISPR-Cas , ADN Intergénico , Escherichia coli/genética
11.
mBio ; 9(6)2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514784

RESUMEN

CRISPR DNA arrays of unique spacers separated by identical repeats ensure prokaryotic immunity through specific targeting of foreign nucleic acids complementary to spacers. New spacers are acquired into a CRISPR array in a process of CRISPR adaptation. Selection of foreign DNA fragments to be integrated into CRISPR arrays relies on PAM (protospacer adjacent motif) recognition, as only those spacers will be functional against invaders. However, acquisition of different PAM-associated spacers proceeds with markedly different efficiency from the same DNA. Here, we used a combination of bioinformatics and experimental approaches to understand factors affecting the efficiency of acquisition of spacers by the Escherichia coli type I-E CRISPR-Cas system, for which two modes of CRISPR adaptation have been described: naive and primed. We found that during primed adaptation, efficiency of spacer acquisition is strongly negatively affected by the presence of an AAG trinucleotide-a consensus PAM-within the sequence being selected. No such trend is observed during naive adaptation. The results are consistent with a unidirectional spacer selection process during primed adaptation and provide a specific signature for identification of spacers acquired through primed adaptation in natural populations.IMPORTANCE Adaptive immunity of prokaryotes depends on acquisition of foreign DNA fragments into CRISPR arrays as spacers followed by destruction of foreign DNA by CRISPR interference machinery. Different fragments are acquired into CRISPR arrays with widely different efficiencies, but the factors responsible are not known. We analyzed the frequency of spacers acquired during primed adaptation in an E. coli CRISPR array and found that AAG motif was depleted from highly acquired spacers. AAG is also a consensus protospacer adjacent motif (PAM) that must be present upstream from the target of the CRISPR spacer for its efficient destruction by the interference machinery. These results are important because they provide new information on the mechanism of primed spacer acquisition. They add to other previous evidence in the field that pointed out to a "directionality" in the capture of new spacers. Our data strongly suggest that the recognition of an AAG PAM by the interference machinery components prior to spacer capture occludes downstream AAG sequences, thus preventing their recognition by the adaptation machinery.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Intergénico/genética , Escherichia coli/genética , ADN Bacteriano/genética
12.
Nucleic Acids Res ; 46(8): 4087-4098, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29596641

RESUMEN

In type I CRISPR-Cas systems, primed adaptation of new spacers into CRISPR arrays occurs when the effector Cascade-crRNA complex recognizes imperfectly matched targets that are not subject to efficient CRISPR interference. Thus, primed adaptation allows cells to acquire additional protection against mobile genetic elements that managed to escape interference. Biochemical and biophysical studies suggested that Cascade-crRNA complexes formed on fully matching targets (subject to efficient interference) and on partially mismatched targets that promote primed adaption are structurally different. Here, we probed Escherichia coli Cascade-crRNA complexes bound to matched and mismatched DNA targets using a magnetic tweezers assay. Significant differences in complex stabilities were observed consistent with the presence of at least two distinct conformations. Surprisingly, in vivo analysis demonstrated that all mismatched targets stimulated robust primed adaptation irrespective of conformational states observed in vitro. Our results suggest that primed adaptation is a direct consequence of a reduced interference efficiency and/or rate and is not a consequence of distinct effector complex conformations on target DNA.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Proteínas Asociadas a CRISPR/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , División del ADN , Escherichia coli/metabolismo , Mutación , Conformación Proteica
13.
Nucleic Acids Res ; 45(6): 3297-3307, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28204574

RESUMEN

During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plásmidos/genética
14.
Proc Natl Acad Sci U S A ; 113(27): 7626-31, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325762

RESUMEN

Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers-short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient "primed" adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector-crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference-that is, target destruction without acquisition of additional spacers-is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector-crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers.


Asunto(s)
Sistemas CRISPR-Cas , ADN Intergénico , Escherichia coli/fisiología , Adaptación Biológica , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo
15.
Nucleic Acids Res ; 43(22): 10831-47, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26586800

RESUMEN

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems allow bacteria to adapt to infection by acquiring 'spacer' sequences from invader DNA into genomic CRISPR loci. Cas proteins use RNAs derived from these loci to target cognate sequences for destruction through CRISPR interference. Mutations in the protospacer adjacent motif (PAM) and seed regions block interference but promote rapid 'primed' adaptation. Here, we use multiple spacer sequences to reexamine the PAM and seed sequence requirements for interference and priming in the Escherichia coli Type I-E CRISPR-Cas system. Surprisingly, CRISPR interference is far more tolerant of mutations in the seed and the PAM than previously reported, and this mutational tolerance, as well as priming activity, is highly dependent on spacer sequence. We identify a large number of functional PAMs that can promote interference, priming or both activities, depending on the associated spacer sequence. Functional PAMs are preferentially acquired during unprimed 'naïve' adaptation, leading to a rapid priming response following infection. Our results provide numerous insights into the importance of both spacer and target sequences for interference and priming, and reveal that priming is a major pathway for adaptation during initial infection.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...