Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806779

RESUMEN

The effect of the type of dopant (titanium and manganese) and of the reduced graphene oxide content (rGO, 30 or 50 wt %) of the α-Fe2O3@rGO nanocomposites on their microstructural properties and electrochemical performance was investigated. Nanostructured composites were synthesized by a simple one-step solvothermal method and evaluated as anode materials for sodium ion batteries. The doping does not influence the crystalline phase and morphology of the iron oxide nanoparticles, but remarkably increases stability and Coulombic efficiency with respect to the anode based on the composite α-Fe2O3@rGO. For fixed rGO content, Ti-doping improves the rate capability at lower rates, whereas Mn-doping enhances the electrode stability at higher rates, retaining a specific capacity of 56 mAhg-1 at a rate of 2C. Nanocomposites with higher rGO content exhibit better electrochemical performance.

2.
ChemSusChem ; 4(8): 1143-50, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21714100

RESUMEN

Catalytic hydrogenolysis, with high conversion and selectivity, promoted by supported palladium substrates in isopropanol and dioxane at a low H(2) pressure (0.5 MPa), is reported for the first time. The catalysts, characterized by using BET isotherms, transmission electron microscopy (TEM), temperature-programmed reduction (TPR), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were obtained by coprecipitation and impregnation techniques. The coprecipitation method allows catalysts with a metal-metal or a metal-support interaction to be obtained, which enhances the catalytic performance for both the conversion of glycerol and the selectivity to 1,2-propanediol. Analogous reactions carried out with catalysts prepared by using impregnation are less efficient. A study of the solvent and temperature effect is also presented. The obtained results allow the hydrogenolysis mechanism to be inferred; this involves both the direct replacement of the carbon-bonded OH group by an incoming hydrogen or the formation of hydroxyacetone as an intermediate, which subsequently undergoes a hydrogenation process to give 1,2-propanediol. Finally, catalytic tests on a large-scale reaction at a higher H(2) pressure and recycling of the samples were carried out with the better performing catalysts (Pd/CoO and Pd/Fe(2)O(3) prepared by using coprecipitation) to verify possible industrial achievements.


Asunto(s)
Glicerol/química , Hidrógeno/química , Paladio/química , Propilenglicol/síntesis química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...