Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682690

RESUMEN

Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.


Asunto(s)
Frío , Escarabajos , Congelación , Hemolinfa , Larva , Animales , Hemolinfa/química , Escarabajos/fisiología , Larva/fisiología , Larva/crecimiento & desarrollo , Aclimatación , Estaciones del Año , Potasio/metabolismo
2.
Mol Plant Microbe Interact ; 37(5): 445-458, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38240660

RESUMEN

Mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a devastating forest insect pest that has killed millions of hectares of pines in western North America over the past two decades. Like other bark beetles, MPB vectors ophiostomatoid fungal species, some of which are pathogenic to host pine species. The phytopathogenicity of these fungal symbionts has sparked considerable debate regarding their role in facilitating MPB attack success. We tested the hypothesis that MPB ophiostomatoid fungal associates like Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield contribute to overwhelming host defenses during MPB mass attack. We compared responses of mature lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees growing in natural stands that were mass attacked by MPB with those inoculated with G. clavigera by examining host defense hormones, secondary metabolites, and gene expression profiles. The jasmonate and ethylene signatures of necrotrophic pathogen-triggered response were identified in G. clavigera-inoculated trees, but only the jasmonate signature of a herbivore-triggered response was measured in MPB-attacked trees. Several G. clavigera-induced changes in pine phenolic metabolite profiles and phenolic biosynthesis gene expression patterns were absent in MPB-attacked pines. These findings indicate that ophiostomatoid fungi like G. clavigera are not a major factor in overwhelming host defenses during MPB mass attack. Instead, fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree. Phenolics appear to play a larger role in the host response to G. clavigera than to MPB, although phenolics may also influence MPB feeding and behavior. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Escarabajos , Ophiostomatales , Pinus , Simbiosis , Pinus/parasitología , Pinus/microbiología , Animales , Ophiostomatales/fisiología , Escarabajos/microbiología , Escarabajos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo Secundario , Regulación de la Expresión Génica de las Plantas
3.
J Chem Ecol ; 43(3): 215-224, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28130740

RESUMEN

Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.


Asunto(s)
Conducta Animal/efectos de los fármacos , Bioensayo , Laboratorios , Atractivos Sexuales/farmacología , Animales , Ropa de Cama y Ropa Blanca , Femenino , Masculino , Ratones , Odorantes/análisis , Atractivos Sexuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...