Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomech Model Mechanobiol ; 22(4): 1145-1162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37000273

RESUMEN

Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.


Asunto(s)
Desarrollo Óseo , Huesos , Ratas , Animales , Estudios Retrospectivos , Desarrollo Óseo/fisiología , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/fisiología , Tibia/diagnóstico por imagen , Tibia/fisiología , Microtomografía por Rayos X , Remodelación Ósea/fisiología
2.
J Biomech Eng ; 142(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32747943

RESUMEN

Microcomputed tomography (micro-CT) based finite element models (FEM) are efficient tools to assess bone mechanical properties. Although they have been developed for different animal models, there is still a lack of data for growing rat long bone models. This study aimed at developing and calibrating voxel-based FEMs using micro-CT scans and experimental data. Twenty-four tibiae were extracted from rats aged 28, 56, and 84 days old (d.o.) (n = 8/group), and their stiffness values were evaluated using three-point bending tests. Prior to testing, tibiae were scanned, reconstructed, and converted into FEM composed of heterogeneous bone properties based on pixel grayscales. Three element material laws (one per group) were calibrated using back-calculation process based on experimental bending data. Two additional specimens per group were used for model verification. The calibrated rigidity-density (E-ρ) relationships were different for each group: E28 = 10,320·ρash3.45; E56 = 43,620·ρash4.41; E84 = 20,090·ρash2.0. Obtained correlations between experimental and FEM stiffness values were 0.43, 0.10, and 0.66 with root-mean-square error (RMSE) of 14.4%, 17.4%, and 15.2% for 28, 56, and 84 d.o. groups, respectively. Prediction errors were less than 13.5% for 28 and 84 d.o. groups but reached 57.1% for the 56 d.o. group. Relationships between bone physical and mechanical properties were found to change during the growth, similarly to bending stiffness values, which increased with bone development. The reduced correlation observed for the 56 d.o. group may be related to the pubescent transition at that age group. These FE models will be useful for investigation of bone behavior in growing rats.


Asunto(s)
Análisis de Elementos Finitos , Microtomografía por Rayos X , Animales , Fenómenos Biomecánicos , Ratas , Estrés Mecánico
3.
JBMR Plus ; 4(4): e10349, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32258967

RESUMEN

Bone is a unique living tissue, which responds to the mechanical stimuli regularly imposed on it. Adolescence facilitates a favorable condition for the skeleton that enables the exercise to positively influence bone architecture and overall strength. However, it is still dubious for how long the skeletal benefits gained in adolescence is preserved at adulthood. The current study aims to use a rat model to investigate the effects of in vivo low- (LI), medium- (MI), and high- (HI) intensity cyclic loadings applied during puberty on longitudinal bone development, morphometry, and biomechanics during adolescence as well as at adulthood. Forty-two young (4-week-old) male rats were randomized into control, sham, LI, MI, and HI groups. After a 5 day/week for 8 weeks cyclic loading regime applied on the right tibia, loaded rats underwent a subsequent 41-week, normal cage activity period. Right tibias were removed at 52 weeks of age, and a comprehensive assessment was performed using µCT, mechanical testing, and finite element analysis. HI and MI groups exhibited reduced body weight and food intake at the end of the loading period compared with shams, but these effects disappeared afterward. HI cyclic loading increased BMD, bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular spacing after loading. All loading-induced benefits, except BMD, persisted until the end of the normal cage activity period. Moreover, HI loading induced enhanced bone area, periosteal perimeter, and moment of inertia, which remained up to the 52nd week. After the normal cage activity at adulthood, the HI group showed increased ultimate force and stress, stiffness, postyield displacement and energy, and toughness compared with the sham group. Overall, our findings suggest that even though both trabecular and cortical bone drifted through age-related changes during aging, HI cyclic loading performed during adolescence can render lifelong benefits in bone microstructure and biomechanics. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

4.
J Cell Physiol ; 235(10): 6736-6753, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31985038

RESUMEN

Advancements in research and care have contributed to increase life expectancy of individuals with cystic fibrosis (CF). With increasing age comes a greater likelihood of developing CF bone disease, a comorbidity characterized by a low bone mass and impaired bone quality, which displays gender differences in severity. However, pathophysiological mechanisms underlying this gender difference have never been thoroughly investigated. We used bone marrow-derived osteoblasts and osteoclasts from Cftr+/+ and Cftr-/- mice to examine whether the impact of CF transmembrane conductance regulator (CFTR) deletion on cellular differentiation and functions differed between genders. To determine whether in vitro findings translated into in vivo observations, we used imaging techniques and three-point bending testing. In vitro studies revealed no osteoclast-autonomous defect but impairment of osteoblast differentiation and functions and aberrant responses to various stimuli in cells isolated from Cftr-/- females only. Compared with wild-type controls, knockout mice exhibited a trabecular osteopenic phenotype that was more pronounced in Cftr-/- males than Cftr-/- females. Bone strength was reduced to a similar extent in knockout mice of both genders. In conclusion, we find a trabecular bone phenotype in Cftr-/- mice that was slightly more pronounced in males than females, which is reminiscent of the situation found in patients. However, at the osteoblast level, the pathophysiological mechanisms underlying this phenotype differ between males and females, which may underlie gender differences in the way bone marrow-derived osteoblasts behave in absence of CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Osteoblastos/metabolismo , Animales , Huesos/metabolismo , Huesos/fisiología , Diferenciación Celular/fisiología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Osteoblastos/fisiología , Osteoclastos/metabolismo , Osteoclastos/fisiología , Osteogénesis/fisiología , Transducción de Señal/fisiología
5.
Sci Rep ; 9(1): 13128, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511559

RESUMEN

Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µÎµ), uphill running (850 µÎµ) and jumping (1250 µÎµ) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.


Asunto(s)
Densidad Ósea , Desarrollo Óseo/fisiología , Placa de Crecimiento/fisiología , Condicionamiento Físico Animal , Tibia/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Peso Corporal , Masculino , Ratas , Ratas Sprague-Dawley
7.
PLoS One ; 13(11): e0207323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30439999

RESUMEN

In vivo micro-computed tomography (micro-CT) can monitor longitudinal changes in bone mass and microstructure in small rodents but imposing high doses of radiation can damage the bone tissue. However, the effect of weekly micro-CT scanning during the adolescence on bone growth and architecture is still unknown. The right proximal tibia of male Sprague-Dawley rats randomized into three dose groups of 0.83, 1.65 and 2.47 Gy (n = 11/group) were CT scanned at weekly intervals from 4th to 12th week of age. The left tibia was used as a control and scanned only at the last time point. Bone marrow cells were investigated, bone growth rates and histomorphometric analyses were performed, and bone structural parameters were determined for both left and right tibiae. Radiation doses of 1.65 and 2.47 Gy affected bone marrow cells, heights of the proliferative and hypertrophic zones, and bone growth rates in the irradiated tibiae. For the 1.65 Gy group, irradiated tibiae resulted in lower BMD, Tb.Th, Tb.N and a higher Tb.Sp compared with the control tibiae. A decrease in BMD, BV/TV, Tb.Th, Tb.N and an increase in Tb.Sp were observed between the irradiated and control tibiae for the 2.47 Gy group. For cortical bone parameters, no effects were noticed for 1.65 and 0.83 Gy groups, but a lower Ct.Th was observed for 2.47 Gy group. Tibial bone development was adversely impacted and trabecular bone, together with bone marrow cells, were negatively affected by the 1.65 and 2.47 Gy radiation doses. Cortical bone microstructure was affected for 2.47 Gy group. However, bone development and morphometry were not affected for 0.83 Gy group. These findings can be used as a proof of concept for using the reasonable high-quality image acquisition under 0.83 Gy radiation doses during the adolescent period of rats without interfering with the bone development process.


Asunto(s)
Desarrollo Óseo/efectos de la radiación , Células de la Médula Ósea , Hueso Esponjoso , Tibia , Microtomografía por Rayos X/efectos adversos , Adolescente , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Hueso Esponjoso/crecimiento & desarrollo , Hueso Esponjoso/patología , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Ratones , Ratas Sprague-Dawley , Tibia/crecimiento & desarrollo , Tibia/patología
9.
Med Eng Phys ; 2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29764734

RESUMEN

The contralateral limb is often used as a control in various clinical, forensic and anthropological studies. However, no studies have been performed to determine if the contra-lateral limb is a suitable control during the bone development period. The aim of this study was to determine the bilateral symmetry of growing rat tibiae in terms of geometric shape, mechanical strength and bone morphological parameters with developmental stages. Left and right tibias of 18 male Sprague-Dawley rats at 4, 8 and 12 weeks of age were scanned with micro-CT for bone-morphometric evaluation and for 3D deviation analysis to quantify the geometric shape variations between left and right tibiae. Overall tibial lengths and curvatures were also measured, and bone mechanical strength was investigated using three-point bending tests. Deviation distributions between bilateral tibiae remained below 0.5 mm for more than 80% of the geometry for all groups. Tibial lengths, longitudinal tibial curvatures, bone-morphometric parameters and mechanical strengths changed significantly during the growing period but kept a strong degree of symmetry between bilateral tibiae. These results suggest that bilateral tibiae can be considered symmetrical in nature and that contralateral limb can be used as a control during the growing period in different experimental scenarios.

10.
J Tissue Eng Regen Med ; 12(6): 1448-1468, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701908

RESUMEN

A significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts, and xenografts and thereby serve as implant materials as bone substitutes for bone repair or remodelling. The complex biology behind the nanostructure and microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signalling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric, and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors, and gene therapies. Advantages and disadvantages of each type, particularly from the perspective of osteoinductive and osteoconductive capabilities, are discussed. Although the numerous challenges of bone regeneration in tissue engineering and regenerative medicine are yet to be entirely addressed, further advancements in osteobiologic materials will pave the way towards engineering fully functional bone replacement grafts.


Asunto(s)
Materiales Biocompatibles/farmacología , Sustitutos de Huesos/farmacología , Osteogénesis/efectos de los fármacos , Animales , Huesos/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ingeniería de Tejidos
11.
J Mech Behav Biomed Mater ; 53: 384-396, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26409229

RESUMEN

The cervical spine sustains high rate complex loading modes during Motor Vehicle Crashes (MVCs) which may produce severe injuries accompanied with soft and/or hard tissue failure. Although previous numerical and experimental studies have provided insights on the cervical spine behavior under various loading scenarios, its response to complex impact loads and the resulting injury mechanisms are not fully understood. A validated Finite Element (FE) model of the ligamentous cervical C2-C3 Functional Spinal Unit (FSU) was utilized to assess the spinal response to six combined impact loading modes; flexion-extension combined with compression and distraction, and lateral bending and axial rotation combined with distraction. The FE model used time and rate-dependent material laws which permit assessing bone fracture and ligament failure. Spinal load-sharing, stresses in the spinal components, intradiscal pressure (IDP) change in the nucleus as well as contact pressure in the facet joints were predicted. Bone and ligaments failure occurrence and initiation instants were investigated. Results showed that spinal load-sharing varied with loading modes. Lateral bending combined with distraction was the most critical loading mode as it increased stresses and strains significantly and produced failure in most of the spinal components compared to other modes. The facet joints and surrounding cancellous bone as well as ligaments particularly the capsular (CL) and flavum (FL) ligaments were the most vulnerable structures to rapid flexion-extension, axial rotation and lateral bending combined with distraction or compression. The excessive stress and strain resulted from these loading modes produced rupture of the CL and FL ligaments and failure in the cancellous bone. The detection of failure initiation as well as fracture assessment demonstrated the vulnerability of ligaments to tensile combined loads and the major contribution of the bony structures in resisting compressive combined loads. Findings of this study may potentially assist in the development of injury prevention and treatment strategies.


Asunto(s)
Vértebras Cervicales/fisiología , Análisis de Elementos Finitos , Ligamentos/fisiología , Adulto , Humanos , Disco Intervertebral/fisiología , Masculino , Ensayo de Materiales , Dinámicas no Lineales , Rotación , Estrés Mecánico , Soporte de Peso
12.
Artículo en Inglés | MEDLINE | ID: mdl-23952913

RESUMEN

The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.


Asunto(s)
Articulación Patelofemoral/fisiología , Síndrome de Dolor Patelofemoral/fisiopatología , Adulto , Fenómenos Biomecánicos , Cartílago/fisiopatología , Estudios de Casos y Controles , Simulación por Computador , Femenino , Análisis de Elementos Finitos , Humanos , Masculino , Modelos Teóricos , Presión , Rango del Movimiento Articular , Estadística como Asunto , Estrés Mecánico
13.
J Biomech ; 47(12): 2891-903, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25129167

RESUMEN

The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.


Asunto(s)
Vértebras Cervicales/fisiología , Disco Intervertebral/fisiología , Ligamentos/fisiología , Modelos Biológicos , Articulación Cigapofisaria/fisiología , Adulto , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Masculino , Rango del Movimiento Articular , Soporte de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA