Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Death Differ ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965447

RESUMEN

TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.

3.
EMBO J ; 42(21): e113928, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712288

RESUMEN

To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Insulina , Animales , Ratones , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Expresión Génica , Glucosa , Lisosomas/metabolismo
4.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106060

RESUMEN

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Ratones , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Estratos Germinativos/metabolismo , Células Germinativas/metabolismo , Receptores de Estrógenos/metabolismo
5.
PLoS Biol ; 21(3): e3002034, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36888606

RESUMEN

The stress-responsive transcription factor EB (TFEB) is a master controller of lysosomal biogenesis and autophagy and plays a major role in several cancer-associated diseases. TFEB is regulated at the posttranslational level by the nutrient-sensitive kinase complex mTORC1. However, little is known about the regulation of TFEB transcription. Here, through integrative genomic approaches, we identify the immediate-early gene EGR1 as a positive transcriptional regulator of TFEB expression in human cells and demonstrate that, in the absence of EGR1, TFEB-mediated transcriptional response to starvation is impaired. Remarkably, both genetic and pharmacological inhibition of EGR1, using the MEK1/2 inhibitor Trametinib, significantly reduced the proliferation of 2D and 3D cultures of cells displaying constitutive activation of TFEB, including those from a patient with Birt-Hogg-Dubé (BHD) syndrome, a TFEB-driven inherited cancer condition. Overall, we uncover an additional layer of TFEB regulation consisting in modulating its transcription via EGR1 and propose that interfering with the EGR1-TFEB axis may represent a therapeutic strategy to counteract constitutive TFEB activation in cancer-associated conditions.


Asunto(s)
Autofagia , Lisosomas , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/genética , Lisosomas/metabolismo , Proliferación Celular/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955786

RESUMEN

Acute lymphoblastic leukemia type B (B-ALL) is the most common kind of pediatric leukemia, characterized by the clonal proliferation of type B lymphoid stem cells. Important progress in ALL treatments led to improvements in long-term survival; nevertheless, many adverse long-term consequences still concern the medical community. Molecular and cellular target therapies, together with immunotherapy, are promising strategies to overcome these concerns. Cannabinoids, enzymes involved in their metabolism, and cannabinoid receptors type 1 (CB1) and type 2 (CB2) constitute the endocannabinoid system, involved in inflammation, immune response, and cancer. CB2 receptor stimulation exerts anti-proliferative and anti-invasive effects in many tumors. In this study, we evaluated the effects of CB2 stimulation on B-ALL cell lines, SUP-B15, by RNA sequencing, Western blotting, and ELISA. We observe a lower expression of CB2 in SUP-B15 cells compared to lymphocytes from healthy subjects, hypothesizing its involvement in B-ALL pathogenesis. CB2 stimulation reduces the expression of CD9, SEC61G, TBX21, and TMSB4X genes involved in tumor growth and progression, and also negatively affects downstream intracellular pathways. Our findings suggest an antitumor role of CB2 stimulation in B-ALL, and highlight a functional correlation between CB2 receptors and specific anti-tumoral pathways, even though further investigations are needed.


Asunto(s)
Linfoma de Burkitt , Cannabinoides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Western Blotting , Cannabinoides/farmacología , Niño , Expresión Génica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Canales de Translocación SEC/metabolismo
7.
Front Cell Dev Biol ; 9: 788117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988080

RESUMEN

Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population's response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/ß-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.

8.
J Biol Chem ; 296: 100138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268382

RESUMEN

The Yes-associated protein (YAP), one of the major effectors of the Hippo pathway together with its related protein WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ), mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ) regulate a large number of target genes, acting as coactivators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis, we identified two molecules that could have a role in the altered genome-wide methylation profile: the long noncoding RNA ephemeron, whose rapid upregulation is crucial for the transition of ESCs into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Embrionarias de Ratones/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP , ADN Metiltransferasa 3B
9.
Epigenomics ; 12(10): 873-888, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32483983

RESUMEN

Aim: First-degree relatives (FDR) of individuals with Type 2 diabetes (T2D) feature restricted adipogenesis, which render them more vulnerable to T2D. Epigenetics may contribute to these abnormalities. Methods: FDR pre-adipocyte Methylome and Transcriptome were investigated by MeDIP- and RNA-Seq, respectively. Results:Methylome analysis revealed 2841 differentially methylated regions (DMR) in FDR. Most DMR localized into gene-body and were hypomethylated. The strongest hypomethylation signal was identified in an intronic-DMR at the PTPRD gene. PTPRD hypomethylation in FDR was confirmed by bisulphite sequencing and was responsible for its upregulation. Interestingly, Ptprd-overexpression in 3T3-L1 pre-adipocytes inhibited adipogenesis. Notably, the validated PTPRD-associated DMR was significantly hypomethylated in peripheral blood leukocytes from the same FDR individuals. Finally, PTPRD methylation pattern was also replicated in obese individuals. Conclusion: Our findings indicated a previously unrecognized role of PTPRD in restraining adipogenesis. This abnormality may contribute to increase FDR proclivity toward T2D.


Asunto(s)
Adipogénesis/genética , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Células 3T3-L1 , Adulto , Animales , Epigénesis Genética , Femenino , Humanos , Masculino , Ratones
10.
Nat Commun ; 11(1): 2461, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424153

RESUMEN

It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linaje de la Célula , Hígado/citología , Hígado/fisiología , Regeneración/fisiología , Animales , Neoplasias de los Conductos Biliares/patología , Conductos Biliares/metabolismo , Diferenciación Celular , Proliferación Celular , Colangiocarcinoma/patología , Regulación hacia Abajo/genética , Hepatocitos/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Esferoides Celulares/citología , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética
11.
J Cachexia Sarcopenia Muscle ; 11(1): 169-194, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31647200

RESUMEN

BACKGROUND: Myopalladin (MYPN) is a striated muscle-specific, immunoglobulin-containing protein located in the Z-line and I-band of the sarcomere as well as the nucleus. Heterozygous MYPN gene mutations are associated with hypertrophic, dilated, and restrictive cardiomyopathy, and homozygous loss-of-function truncating mutations have recently been identified in patients with cap myopathy, nemaline myopathy, and congenital myopathy with hanging big toe. METHODS: Constitutive MYPN knockout (MKO) mice were generated, and the role of MYPN in skeletal muscle was studied through molecular, cellular, biochemical, structural, biomechanical, and physiological studies in vivo and in vitro. RESULTS: MKO mice were 13% smaller compared with wild-type controls and exhibited a 48% reduction in myofibre cross-sectional area (CSA) and significantly increased fibre number. Similarly, reduced myotube width was observed in MKO primary myoblast cultures. Biomechanical studies showed reduced isometric force and power output in MKO mice as a result of the reduced CSA, whereas the force developed by each myosin molecular motor was unaffected. While the performance by treadmill running was similar in MKO and wild-type mice, MKO mice showed progressively decreased exercise capability, Z-line damage, and signs of muscle regeneration following consecutive days of downhill running. Additionally, MKO muscle exhibited progressive Z-line widening starting from 8 months of age. RNA-sequencing analysis revealed down-regulation of serum response factor (SRF)-target genes in muscles from postnatal MKO mice, important for muscle growth and differentiation. The SRF pathway is regulated by actin dynamics as binding of globular actin to the SRF-cofactor myocardin-related transcription factor A (MRTF-A) prevents its translocation to the nucleus where it binds and activates SRF. MYPN was found to bind and bundle filamentous actin as well as interact with MRTF-A. In particular, while MYPN reduced actin polymerization, it strongly inhibited actin depolymerization and consequently increased MRTF-A-mediated activation of SRF signalling in myogenic cells. Reduced myotube width in MKO primary myoblast cultures was rescued by transduction with constitutive active SRF, demonstrating that MYPN promotes skeletal muscle growth through activation of the SRF pathway. CONCLUSIONS: Myopalladin plays a critical role in the control of skeletal muscle growth through its effect on actin dynamics and consequently the SRF pathway. In addition, MYPN is important for the maintenance of Z-line integrity during exercise and aging. These results suggest that muscle weakness in patients with biallelic MYPN mutations may be associated with reduced myofibre CSA and SRF signalling and that the disease phenotype may be aggravated by exercise.


Asunto(s)
Proteínas Musculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Factor de Respuesta Sérica/efectos de los fármacos , Animales , Femenino , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/farmacología
12.
Eur J Hum Genet ; 27(9): 1475-1480, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31152157

RESUMEN

We identified a 14q21.2 microdeletion in a 16-year-old boy with autism spectrum disorder (ASD), IQ in the lower part of normal range but high-functioning memory skills. The deletion affects a gene desert, and the non-deleted gene closest to the microdeletion boundaries is LRFN5, which encodes a protein involved in synaptic plasticity and implicated in neuro-psychiatric disorders. LRFN5 expression was significantly decreased in the proband's skin fibroblasts. The deleted region includes the pseudogene chr14.232.a, which is transcribed into a long non-coding RNA (lncLRFN5-10), whose levels were also significantly reduced in the proband's fibroblasts compared to controls. Transfection of the patient's fibroblasts with a plasmid expressing chr14.232.a significantly increased LRFN5 expression, while siRNA targeting chr14.232.a-derived lncLRFN5-10 reduced LRFN5 levels. In summary, we report on an individual with ASD carrying a microdeletion encompassing the pseudogene chr14.232.a encoding for lncLRFN5-10, which was found to affect the expression levels of the nearby, non-deleted LRFN5. This case illustrates the potential role of long non-coding RNAs in regulating expression of neighbouring genes with a functional role in ASD pathogenesis.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Cromosomas Humanos Par 14 , Expresión Génica , Glicoproteínas de Membrana/genética , Seudogenes , Adolescente , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Piel/citología , Secuenciación del Exoma
13.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31126958

RESUMEN

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Relojes Circadianos , Metabolismo Energético , Nutrientes/fisiología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Sitios de Unión , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/fisiología , Nutrientes/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
BMC Genomics ; 20(1): 307, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31014245

RESUMEN

BACKGROUND: Protein kinases are enzymes controlling different cellular functions. Genetic alterations often result in kinase dysregulation, making kinases a very attractive class of druggable targets in several human diseases. Existing approved drugs still target a very limited portion of the human 'kinome', demanding a broader functional knowledge of individual and co-expressed kinase patterns in physiologic and pathologic settings. The development of novel rapid and cost-effective methods for kinome screening is therefore highly desirable, potentially leading to the identification of novel kinase drug targets. RESULTS: In this work, we describe the development of KING-REX (KINase Gene RNA EXpression), a comprehensive kinome RNA targeted custom assay-based panel designed for Next Generation Sequencing analysis, coupled with a dedicated data analysis pipeline. We have conceived KING-REX for the gene expression analysis of 512 human kinases; for 319 kinases, paired assays and custom analysis pipeline features allow the evaluation of 3'- and 5'-end transcript imbalances as readout for the prediction of gene rearrangements. Validation tests on cell line models harboring known gene fusions demonstrated a comparable accuracy of KING-REX gene expression assessment as in whole transcriptome analyses, together with a robust detection of transcript portion imbalances in rearranged kinases, even in complex RNA mixtures or in degraded RNA. CONCLUSIONS: These results support the use of KING-REX as a rapid and cost effective kinome investigation tool in the field of kinase target identification for applications in cancer biology and other human diseases.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas Quinasas/genética , Fusión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Quinasas/metabolismo , Estabilidad del ARN
15.
Nat Cell Biol ; 21(2): 275-286, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598530

RESUMEN

Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1), SOX2, KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening.


Asunto(s)
Diferenciación Celular , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/citología , Microfluídica/métodos , Medicina Regenerativa/métodos , Animales , Células Cultivadas , Estratos Germinativos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/genética
16.
Mol Ther ; 26(2): 524-541, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29292161

RESUMEN

Retinal gene transfer with adeno-associated viral (AAV) vectors holds great promise for the treatment of inherited retinal degenerations (IRDs). One limit of AAV is its transfer capacity of about 5 kb, which can be expanded to about 9 kb, using dual AAV vectors. This strategy would still not suffice for treatment of IRDs such as Usher syndrome type 1D or Alström syndrome type I (ALMS) due to mutations in CDH23 or ALMS1, respectively. To overcome this limitation, we generated triple AAV vectors, with a maximal transfer capacity of about 14 kb. Transcriptomic analysis following triple AAV transduction showed the expected full-length products along a number of aberrant transcripts. However, only the full-length transcripts are efficiently translated in vivo. We additionally showed that approximately 4% of mouse photoreceptors are transduced by triple AAV vectors and showed correct localization of recombinant ALMS1. The low-photoreceptor transduction levels might justify the modest and transient improvement we observe in the retina of a mouse model of ALMS. However, the levels of transduction mediated by triple AAV vectors in pig retina reached 40% of those observed with single vectors, and this bodes well for further improving the efficiency of triple AAV vectors in the retina.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Recombinación Genética , Retina/metabolismo , Transducción Genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Porcinos , Transcripción Genética , Transgenes
17.
Genes (Basel) ; 8(10)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053603

RESUMEN

We performed a clinical and genetic characterization of a pediatric cohort of patients with inherited retinal dystrophy (IRD) to identify the most suitable cases for gene therapy. The cohort comprised 43 patients, aged between 2 and 18 years, with severe isolated IRD at the time of presentation. The ophthalmological characterization also included assessment of the photoreceptor layer integrity in the macular region (ellipsoid zone (EZ) band). In parallel, we carried out a targeted, next-generation sequencing (NGS)-based analysis using a panel that covers over 150 genes with either an established or a candidate role in IRD pathogenesis. Based on the ophthalmological assessment, the cohort was composed of 24 Leber congenital amaurosis, 14 early onset retinitis pigmentosa, and 5 achromatopsia patients. We identified causative mutations in 58.1% of the cases. We also found novel genotype-phenotype correlations in patients harboring mutations in the CEP290 and CNGB3 genes. The EZ band was detectable in 40% of the analyzed cases, also in patients with genotypes usually associated with severe clinical manifestations. This study provides the first detailed clinical-genetic assessment of severe IRDs with infantile onset and lays the foundation of a standardized protocol for the selection of patients that are more likely to benefit from gene replacement therapeutic approaches.

18.
Genes (Basel) ; 8(10)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053642

RESUMEN

Inherited retinal diseases (IRDs) are often associated with variable clinical expressivity (VE) and incomplete penetrance (IP). Underlying mechanisms may include environmental, epigenetic, and genetic factors. Cis-acting expression quantitative trait loci (cis-eQTLs) can be implicated in the regulation of genes by favoring or hampering the expression of one allele over the other. Thus, the presence of such loci elicits allelic expression imbalance (AEI) that can be traced by massive parallel sequencing techniques. In this study, we performed an AEI analysis on RNA-sequencing (RNA-seq) data, from 52 healthy retina donors, that identified 194 imbalanced single nucleotide polymorphisms(SNPs) in 67 IRD genes. Focusing on SNPs displaying AEI at a frequency higher than 10%, we found evidence of AEI in several IRD genes regularly associated with IP and VE (BEST1, RP1, PROM1, and PRPH2). Based on these SNPs commonly undergoing AEI, we performed pyrosequencing in an independent sample set of 17 healthy retina donors in order to confirm our findings. Indeed, we were able to validate CDHR1, BEST1, and PROM1 to be subjected to cis-acting regulation. With this work, we aim to shed light on differentially expressed alleles in the human retina transcriptome that, in the context of autosomal dominant IRD cases, could help to explain IP or VE.

19.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013292

RESUMEN

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Asunto(s)
Cardiomiopatías/patología , Gastritis Hipertrófica/patología , Mutación Missense/genética , Receptores Notch/metabolismo , Gastropatías/patología , Ubiquitina-Proteína Ligasas/genética , Disfunción Ventricular Izquierda/patología , Animales , Animales Recién Nacidos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Exoma/genética , Femenino , Gastritis Hipertrófica/etiología , Gastritis Hipertrófica/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Linaje , Fenotipo , Ratas , Receptores Notch/genética , Transducción de Señal , Gastropatías/etiología , Gastropatías/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo
20.
Oncotarget ; 7(37): 58743-58758, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27542212

RESUMEN

The discovery of inhibitors for oncogenic signalling pathways remains a key focus in modern oncology, based on personalized and targeted therapeutics. Computational drug repurposing via the analysis of FDA-approved drug network is becoming a very effective approach to identify therapeutic opportunities in cancer and other human diseases. Given that gene expression signatures can be associated with specific oncogenic mutations, we tested whether a "reverse" oncogene-specific signature might assist in the computational repositioning of inhibitors of oncogenic pathways. As a proof of principle, we focused on oncogenic PI3K-dependent signalling, a molecular pathway frequently driving cancer progression as well as raising resistance to anticancer-targeted therapies. We show that implementation of "reverse" oncogenic PI3K-dependent transcriptional signatures combined with interrogation of drug networks identified inhibitors of PI3K-dependent signalling among FDA-approved compounds. This led to repositioning of Niclosamide (Niclo) and Pyrvinium Pamoate (PP), two anthelmintic drugs, as inhibitors of oncogenic PI3K-dependent signalling. Niclo inhibited phosphorylation of P70S6K, while PP inhibited phosphorylation of AKT and P70S6K, which are downstream targets of PI3K. Anthelmintics inhibited oncogenic PI3K-dependent gene expression and showed a cytostatic effect in vitro and in mouse mammary gland. Lastly, PP inhibited the growth of breast cancer cells harbouring PI3K mutations. Our data indicate that drug repositioning by network analysis of oncogene-specific transcriptional signatures is an efficient strategy for identifying oncogenic pathway inhibitors among FDA-approved compounds. We propose that PP and Niclo should be further investigated as potential therapeutics for the treatment of tumors or diseases carrying the constitutive activation of the PI3K/P70S6K signalling axis.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Biología Computacional , Reposicionamiento de Medicamentos , Glándulas Mamarias Animales/efectos de los fármacos , Niclosamida/uso terapéutico , Compuestos de Pirvinio/uso terapéutico , Animales , Neoplasias de la Mama/patología , Carcinogénesis , Línea Celular Tumoral , Aprobación de Drogas , Femenino , Humanos , Glándulas Mamarias Animales/patología , Ratones , Niclosamida/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Compuestos de Pirvinio/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...