Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(21): 12016-12025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36617957

RESUMEN

Human mitochondria are the vital cell organelle acting as a storehouse of energy generation and diverse regulatory functions. Mitochondrial DNA comprises 93% coding region and 7% non-coding regions, in which the non-coding region hypothesized as responsible for signaling is our specific interest. Here, we explored the unknown functions of mitochondrial non-coding RNAs by studying their respective signaling pathways. We retrieved conserved motifs of interactions from known experimental protein-RNA complexes to model unknown mitochondrial ncRNA sequences. Our results provide the ncRNAs list and show their involvement in four crucial pathways, such as (i) Processing of Capped Intron-Containing Pre-mRNA, (ii) Spliceosome, (iii) Spliceosomal assembly, and (iv) RNA Polymerase II Transcription, respectively. The interactome analysis revealed that the SRSF2 and U2AF2 proteins interact with ncRNAs. Further, we have simulated the selected ncRNA-protein complexes in cell-like environmental conditions and found them stable in terms of energetics. Through our study, we have identified an apparent interaction of mitochondrial ncRNAs with proteins and their role in critical signaling pathways, providing new insights into mitochondrial ncRNA-dependent gene regulation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mitocondrias , ARN no Traducido , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica
2.
J Biomol Struct Dyn ; 40(6): 2586-2599, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33140689

RESUMEN

Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transducción de Señal , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma
3.
Cell Rep ; 23(1): 227-238.e3, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617662

RESUMEN

Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/genética , Neoplasias/genética , Fusión de Oncogenes , Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
4.
Phys Biol ; 12(3): 036003, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25988584

RESUMEN

In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Represoras Lac/genética , Regiones Promotoras Genéticas , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Represoras Lac/química , Represoras Lac/metabolismo , Magnesio/metabolismo , Modelos Teóricos
5.
mBio ; 6(1)2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25626902

RESUMEN

UNLABELLED: By measuring individual mRNA production at the single-cell level, we investigated the lac promoter's transcriptional transition during cell growth phases. In exponential phase, variation in transition rates generates two mixed phenotypes, low and high numbers of mRNAs, by modulating their burst frequency and sizes. Independent activation of the regulatory-gene sequence does not produce bimodal populations at the mRNA level, but bimodal populations are produced when the regulatory gene is activated coordinately with the upstream and downstream region promoter sequence (URS and DRS, respectively). Time-lapse microscopy of mRNAs for lac and a variant lac promoter confirm this observation. Activation of the URS/DRS elements of the promoter reveals a counterplay behavior during cell phases. The promoter transition rate coupled with cell phases determines the mRNA and transcriptional noise. We further show that bias in partitioning of RNA does not lead to phenotypic switching. Our results demonstrate that the balance between the URS and the DRS in transcriptional regulation determines population diversity. IMPORTANCE: By measuring individual mRNA production at the single-cell level, we investigated the lac promoter transcriptional transition during cell growth phases. In exponential phase, variation in transition rate generates two mixed phenotypes producing low and high numbers of mRNAs by modulating the burst frequency and size. Independent activation of the regulatory gene sequence does not produce bimodal populations at the mRNA level, while it does when activated together through the coordination of upstream/downstream promoter sequences (URS/DRS). Time-lapse microscopy of mRNAs for lac and a lac variant promoter confirm this observation. Activation of the URS/DRS elements of the promoter reveals a counterplay behavior during cell phases. The promoter transition rate coupled with cell phases determines the mRNA and transcriptional noise. We further show that bias in partitioning of RNA does not lead to phenotypic switching. Our results demonstrate that the balance between URS and DRS in transcription regulation is determining the population diversity.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Transcripción Genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Operón Lac , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA