Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 314(1): G14-G21, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882825

RESUMEN

Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.


Asunto(s)
Factor Nuclear 4 del Hepatocito/metabolismo , Mucosa Intestinal/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Sitios de Unión , Células CACO-2 , Regulación de la Expresión Génica , Células HCT116 , Factor Nuclear 4 del Hepatocito/genética , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Intercambiador 3 de Sodio-Hidrógeno/genética
2.
Am J Physiol Cell Physiol ; 308(12): C964-71, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25855079

RESUMEN

The bile acid transporter ASBT is a glycoprotein responsible for active absorption of bile acids. Inhibiting ASBT function and bile acid absorption is an attractive approach to lower plasma cholesterol and improve glucose imbalance in diabetic patients. Deglycosylation of ASBT was shown to decrease its function. However, the exact roles of N-glycosylation of ASBT, and how it affects its function, is not known. Current studies investigated the roles of N-glycosylation in ASBT protein stability and protection against proteases utilizing HEK-293 cells stably transfected with ASBT-V5 fusion protein. ASBT-V5 protein was detected as two bands with molecular mass of ~41 and ~35 kDa. Inhibition of glycosylation by tunicamycin significantly decreased ASBT activity and shifted ASBT bands to ~30 kDa, representing a deglycosylated protein. Treatment of total cellular lysates with PNGase F or Endo H glycosidases showed that the upper 41-kDa band represents a fully mature N-acetylglucosamine-rich glycoprotein and the lower 35-kDa band represents a mannose-rich core glycoprotein. Studies with the glycosylation deficient ASBT mutant (N10Q) showed that the N-glycosylation is not essential for ASBT targeting to plasma membrane. However, mature glycosylation significantly increased the half-life and protected ASBT protein from digestion with trypsin. Incubating the cells with high glucose (25 mM) for 48 h increased mature glycosylated ASBT along with an increase in its function. These results unravel novel roles for N-glycosylation of ASBT and suggest that high levels of glucose alter the composition of the glycan and may contribute to the increase in ASBT function in diabetes mellitus.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Íleon/enzimología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Simportadores/metabolismo , Glucosa/metabolismo , Glicosilación , Células HEK293 , Semivida , Humanos , Peso Molecular , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Conformación Proteica , Desnaturalización Proteica , Estabilidad Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Simportadores/química , Simportadores/genética , Factores de Tiempo , Transfección
3.
PLoS One ; 8(12): e82023, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376510

RESUMEN

Na(+)/H(+) exchangers (NHEs) play important roles in regulating internal pH (pHi), cell volume and neutral Na(+) absorption in the human intestine. Earlier studies have shown that low extracellular pH (pHe) and metabolic acidosis increases the expression and function of NHE1-3 genes. However, transcriptional mechanisms involved remained unknown. Therefore, we investigated the molecular mechanisms underlying acid-induced NHE2 expression in C2BBe1 and SK-CO15 intestinal epithelial cells. Assessing total RNA and protein by RT-PCR and Western blot analysis, respectively, displayed significant increases in the NHE2 mRNA and protein levels in cells exposed to acidic media (pH 6.5 and 6.7) compared to normal medium. Acid treatment was also associated with a significant enhancement in NHE2 transport activity. Quantification of the heterogeneous nuclear RNA indicated that the rate of NHE2 transcription was increased in response to acid. Furthermore, acid caused a significant increase in NHE2 promoter activity confirming transcriptional upregulation. Through functional and mutational studies the acid-response element was mapped to a 15-nucleotide GC-rich sequence at bp -337 to -323 upstream from the transcription start site. We previously identified this element as an overlapping Egr-1/Sp1/Egr-1 motif that was essential for the NHE2 upregulation by mitogen-induced transcription factor Egr-1. Cells exposed to acid exhibited a temporal increase in Egr-1 mRNA and protein expression. These events were followed by Egr-1 nuclear accumulation, as detected by immunofluorescence microscopy, and potentiated its in vitro and in vivo interaction with the NHE2 promoter. Disruption of ESE motif and knockdown of Egr-1 expression by targeted small interfering RNA abrogated the acid-induced NHE2 transcriptional activity. These data indicate that the acid-dependent NHE2 stimulation is implemented by transcriptional upregulation of NHE2 via acid-induced Egr-1 in the intestinal epithelial cells.


Asunto(s)
Acidosis/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Enterocitos/metabolismo , Espacio Extracelular/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transcripción Genética
4.
J Mol Cell Cardiol ; 52(1): 154-64, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21971072

RESUMEN

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament assembly protein that stabilizes sarcomeric structure and regulates cardiac function; however, the profile of cMyBP-C degradation after myocardial infarction (MI) is unknown. We hypothesized that cMyBP-C is sensitive to proteolysis and is specifically increased in the bloodstream post-MI in rats and humans. Under these circumstances, elevated levels of degraded cMyBP-C could be used as a diagnostic tool to confirm MI. To test this hypothesis, we first established that cMyBP-C dephosphorylation is directly associated with increased degradation of this myofilament protein, leading to its release in vitro. Using neonatal rat ventricular cardiomyocytes in vitro, we were able to correlate the induction of hypoxic stress with increased cMyBP-C dephosphorylation, degradation, and the specific release of N'-fragments. Next, to define the proteolytic pattern of cMyBP-C post-MI, the left anterior descending coronary artery was ligated in adult male rats. Degradation of cMyBP-C was confirmed by a reduction in total cMyBP-C and the presence of degradation products in the infarct tissue. Phosphorylation levels of cMyBP-C were greatly reduced in ischemic areas of the MI heart compared to non-ischemic regions and sham control hearts. Post-MI plasma samples from these rats, as well as humans, were assayed for cMyBP-C and its fragments by sandwich ELISA and immunoprecipitation analyses. Results showed significantly elevated levels of cMyBP-C in the plasma of all post-MI samples. Overall, this study suggests that cMyBP-C is an easily releasable myofilament protein that is dephosphorylated, degraded and released into the circulation post-MI. The presence of elevated levels of cMyBP-C in the blood provides a promising novel biomarker able to accurately rule in MI, thus aiding in the further assessment of ischemic heart disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Proteolisis , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Factores de Tiempo
5.
Am J Physiol Gastrointest Liver Physiol ; 302(3): G317-25, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22052014

RESUMEN

The apical Na+/H+ exchanger (NHE) isoform NHE2 is involved in transepithelial Na+ absorption in the intestine. Our earlier studies have shown that mitogenic agent phorbol 12-myristate 13-acetate (PMA) induces the expression of NHE2 through activation of transcription factor early growth response-1 (Egr-1) and its interactions with the NHE2 promoter. However, the signaling pathways involved in transcriptional stimulation of NHE2 in response to PMA in the intestinal epithelial cells are not known. Chemical inhibitors and genetic approaches were used to investigate the signaling pathways responsible for the stimulation of NHE2 expression by PMA via Egr-1 induction. We show that, in response to PMA, PKCδ, a member of novel PKC isozymes, and MEK-ERK1/2 pathway of mitogen-activated protein kinases stimulate the NHE2 expression in C2BBe1 intestinal epithelial cells. PMA rapidly and transiently induced activation of PKCδ. Small inhibitory RNA-mediated knockdown of PKCδ blocked the stimulatory effect of PMA on the NHE2 promoter activity. In addition, blockade of PKCδ by rottlerin, a PKCδ-specific inhibitor, and ERK1/2 by U0126, a MEK-ERK inhibitor, abrogated PMA-induced Egr-1 expression. Immunofluorescence studies revealed that inhibition of ERK1/2 activation prevents translocation of PMA-induced Egr-1 into the nucleus. Consistent with these data, PMA-induced Egr-1 interaction with the NHE2 promoter region was prevented in nuclear extracts from U0126-pretreated cells. In conclusion, our data provide the first evidence that the stimulatory effect of PMA on NHE2 expression is mediated through the initial activation of PKCδ, subsequent PKCδ-dependent activation of MEK-ERK1/2 signaling pathway, and stimulation of Egr-1 expression. Furthermore, we show that transcription factor Egr-1 acts as an intermediate effector molecule that links the upstream signaling cues to the long-term stimulation of NHE2 expression by PMA in C2BBe1 cells.


Asunto(s)
Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa C-delta/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Regulación hacia Arriba/genética , Transporte Activo de Núcleo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Epiteliales/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Elementos de Respuesta/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , Acetato de Tetradecanoilforbol/administración & dosificación , Acetato de Tetradecanoilforbol/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...