Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553971

RESUMEN

Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.

2.
Int J Biol Macromol ; 251: 126397, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37597640

RESUMEN

The study deals with the isolation, purification and characterization of galactomannan from the endosperm of Borassus labellifer (Linn.) to be used for biomaterial fabrication in tissue engineering (TE) applications. The isolated Borassus flabellifer (Linn.) galactomannan (BFG) through a sequential aqueous dissolution, centrifugation and ethanol precipitation presented a total yield of 19.77 ± 1.05 % (w/w) with advantageous compositional and functional properties. BFG was found to have mannose to galactose (M/G) ratio of 1.4:1. The molecular weight of BFG was found to be 4.9 × 105 g/mol and the molecular structure analysis by FTIR and NMR spectroscopy revealed the presence of α-linked, d-galactopyranose units and ß-linked, D-mannopyranose units. Further characterization by rheometer confirmed the non-Newtonian and pseudo-plastic behavior of different BFG concentrations and structural analysis by XRD and SEM confirmed the amorphous nature of BFG with the presence of pores and cervices on the rough surface. Finally, the favorable biological activity demonstrated in response to fibroblast cells against different BFG concentrations substantiates its relevance to be used in biofabrication of tissue scaffolds.

3.
Int J Biol Macromol ; 217: 522-535, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35841966

RESUMEN

This study describes the fabrication of cellulose scaffold (CS) and cellulose-chitosan (CS/CHI) scaffolds from the immature endosperm of Borassus flabellifer (Linn.) (BF) loaded with platelet rich plasma (PRP). Thus, developed scaffolds were evaluated for their physicochemical and mechanical behavior, growth factor release and biological performance. Additionally, in vivo response was assessed in a sub cutaneous rat model to study vascularization, host inflammatory response and macrophage polarization. The results of this study demonstrated that CS and CS/CHI scaffolds with PRP demonstrated favorable physiochemical and morphogical properties. The scaffold groups CS-PRP and CS/CHI-PRP were able to release growth factors in a well sustained manner under physiological conditions. The presence of PRP in cellulosic scaffolds did show significant differences in their behavior when investigated under in vitro studies, where the release of diverse cytokines improved the cellular proliferation and differentiation of osteoblasts. Finally, the PRP enriched scaffolds when studied under in vivo conditions showed increased angiogenesis and re-epithelialization with adequate collagen deposition and tissue remodeling. Our results suggest that besides the conventional carrier systems, this new-generation of plant-based cellulosic scaffolds with/without any modification can serve as a suitable carrier for PRP encapsulation and release, which can be used in numerous tissue regenerative therapies.


Asunto(s)
Quitosano , Plasma Rico en Plaquetas , Animales , Celulosa/metabolismo , Celulosa/farmacología , Quitosano/metabolismo , Quitosano/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Plasma Rico en Plaquetas/metabolismo , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
ACS Biomater Sci Eng ; 8(5): 2000-2015, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452211

RESUMEN

The utility of plant tissues as scaffolding materials has been gaining significant interest in recent years owing to their unique material characteristics that are ideal for tissue regeneration. In this study, the degradation and biocompatibility of natural cellulosic scaffolds derived from Borassus flabellifer (Linn.) (BF) immature endosperm was improved by chemical oxidation and surface functionalization processes. Briefly, thus obtained cellulosic scaffolds were sequentially processed via a detergent exchange decellularization process followed by sodium periodate mediated oxidation and organosilane-based surface modification using amino (NH2)-terminated 3-aminopropyltriethoxysilane (APTES) and methyl (CH3)-terminated octadecyltrichlorosilane (OTS). Post oxidation and surface functionalization, the scaffolds showed improved physiochemical, morphological, and mechanical properties. Especially, the swelling capacity, total porosity, surface area, degradation kinetics, and mechanical behavior of scaffold were significantly higher in modified scaffold groups. The biocompatibility analysis demonstrated excellent cellular adhesion, proliferation and differentiation of osteoblasts with an evident upregulation of mineralization. Subcutaneous implantation of these scaffolds in a rat model demonstrated active angiogenesis, enhanced degradation, and excellent biocompatibility with concomitant deposition of a collagen matrix. Taken together, the native cellulosic scaffolds post chemical oxidation and surface functionalization can exclusively integrate the potential properties of native soft tissue with ameliorated in vitro and in vivo support in bone tissue engineering for nonloading bearing applications.


Asunto(s)
Compuestos de Organosilicio , Andamios del Tejido , Animales , Regeneración Ósea , Celulosa/farmacología , Ratas , Ingeniería de Tejidos , Andamios del Tejido/química
5.
Int J Biol Macromol ; 195: 179-189, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863969

RESUMEN

The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.


Asunto(s)
Alginatos/química , Carboximetilcelulosa de Sodio/química , Gelatina/química , Menisco/citología , Bioimpresión/métodos , Cartílago/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Menisco/metabolismo , Poliésteres , Impresión Tridimensional , Programas Informáticos , Ingeniería de Tejidos , Andamios del Tejido/química
6.
Carbohydr Polym ; 272: 118494, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34420749

RESUMEN

In this study, Borassus flabellifer (Linn.) (BF) immature endosperm was decellularized to produce three dimensional (3D) cellulose scaffolds that can support mammalian 3D cell culture. To this regard, we first evaluated the chemical composition, nutritive profile and pharmacological activities of BF endosperm. The results demonstrated that the BF tissue represented a complex concoction of polysaccharides with intrinsic phyto-ingredients which provide excellent pharmacological properties. Furthermore cellulosic scaffolds (CS) obtained from BF was treated with chitosan to produce cellulose-chitosan (CS/CHI) hybrid scaffolds. The comparative investigation on both scaffolds exhibited adequate swelling with controlled porosity and pore-size distribution. The physiochemical characterization showed reduced biodegradation, improved thermal stability and enhanced compressive strength in CS/CHI group. Biological studies reported favorable adhesion and proliferation of fibroblasts with evident cellular penetration and colonization on the both scaffolds. Taken together, plant derived cellulosic scaffolds could be used as an alternative scaffolding material in regenerative medicine.


Asunto(s)
Celulosa , Ingeniería de Tejidos , Regeneración Ósea , Quitosano , Matriz Extracelular , Andamios del Tejido
7.
Mater Sci Eng C Mater Biol Appl ; 126: 112149, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082960

RESUMEN

Hydroxyapatite (HAP) nanopowders with different manganese (Mn) and selenium (Se) contents with Mn/Ca and Se/P molar ratio of 1 mol%, 2.5 mol% and 5 mol% were synthesized by wet-co-chemical precipitation method. The results revealed that with either Mn or Se doping, ion-substituted apatite phase was achieved with good crystallographic features. The combined evidence obtained from spectrometric techniques revealed that nanocrystalline HAP was effectively doped with Mn and Se ions, where Se in form of SeO32- replaced PO43- and Mn2+ replaced Ca2+. Mn and Se doped HAP samples exhibited rod-like and needle-like morphology with strong tendency to form agglomerates. HAP enriched with Mn and Se represented a strong antibacterial effect and also showed prominent blood compatibility. From the biocompatibility testing, it was evident that Mn and Se doped HAP augmented the osteoblasts adhesion, migration and proliferation in a dose-dependent manner. To conclude from this study, it is clearly evident that the doping amount of both Mn and Se ions can determine the size and morphology of the final HAP product. Therefore, Mn and Se HAP nanopowders with molar ratio less than 5 mol% without any heat treatment can provide good crystallographic features to HAP with satisfying micro-structural, thermal and biological properties.


Asunto(s)
Durapatita , Selenio , Regeneración Ósea , Iones , Manganeso
8.
Int J Biol Macromol ; 183: 564-588, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33933542

RESUMEN

Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.


Asunto(s)
Nanocompuestos , Polisacáridos/química , Impresión Tridimensional/tendencias , Medicina Regenerativa/tendencias , Ingeniería de Tejidos/tendencias , Alginatos/química , Animales , Carragenina/química , Celulosa/química , Difusión de Innovaciones , Predicción , Humanos , Pectinas/química , Sefarosa/química
9.
Mater Sci Eng C Mater Biol Appl ; 96: 941-954, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606606

RESUMEN

Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.


Asunto(s)
Sustitutos de Huesos/química , Sustitutos de Huesos/uso terapéutico , Huesos/metabolismo , Reactivos de Enlaces Cruzados/química , Ingeniería de Tejidos/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA