Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 394: 130228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128888

RESUMEN

Addressing global energy demand, researchers sought eco-friendly biobutanol production from lignocellulosic waste biomass. In the present research work, five different pre-treatment methods viz., Microwave, Ultrasound, Alkali, Acid, and Hybrid, were investigated to explore its biobutanol production potential by utilizing Pleurotus ostreatus spent as substrate. The compositional and physico-chemical changes of the pre-treated Spent Mushroom Substrate (SMS) were assessed using SEM, FTIR, and XRD. Hybrid pre-treatment (Microwave, Alkali, Ultrasound) showed higher delignification when compared to conventional pre-treatment method. Hybrid pre-treated SMS resulted in higher total reducing sugars (521.53 ± 1.84 mg/g) than indigenous SMS (267.89 ± 1.53 mg/g). Fermentation of hybrid pre-treated SMS with Clostridium acetobutylicum MTCC 11274 produced the highest biobutanol concentration (9.84 ± 0.03 g/L) and yielded 0.38 ± 0.02 g/g of biobutanol. This study revealed that hybrid pre-treatment could be a promising solution for enhanced biobutanol production using SMS biomass.


Asunto(s)
Agaricales , Clostridium acetobutylicum , Pleurotus , Fermentación , Álcalis
2.
Food Sci Biotechnol ; 32(10): 1337-1350, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37457405

RESUMEN

Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.

3.
Chemosphere ; 287(Pt 2): 132165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826901

RESUMEN

High energy consumption and depletion of fossil fuels lead to the introduction of new technologies to produce alternative fuels with fewer emissions of greenhouse gases. The present investigation was focused to utilize the waste coal washery rejects as a substrate to produce biogenic methane under optimum conditions. Experiments were performed to explore the efficiency of non-coal samples (cow dung, distillery anaerobic digester sludge) and coal mines enriched samples in the degradation of coal washery rejects. Further cow dung, distillery anaerobic sludge, and coal washery rejects were taken at various concentrations to develop anaerobic slurry and analysed for its biogas production. The anaerobic slurry which contains 1:1:1 of cow dung, distillery anaerobic sludge, and coal washery rejects produced methane of around 55.7%. The coal enriched samples showed a maximum of 22.6% of methane. Subsequently, the best methane-producing anaerobic non-coal consortiums were compared with coal enriched microbial culture in converting coal washery rejects of 10 g/l to methane. Results revealed that cow dung inoculum and coal mine enriched inoculum source produced the nearly same amount of methane. This study suggested that the selected anaerobic slurries and coal enriched samples can utilize sub-bituminous coal washery rejects in methane production. Thus, these consortiums can be applied in converting a large amount of coal washery rejects into methane thus can lead to the reclamation of the site.


Asunto(s)
Carbón Mineral , Metano , Biocombustibles , Aguas del Alcantarillado
4.
Environ Monit Assess ; 193(10): 638, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34505189

RESUMEN

Synthetic dyes used in the textile and paper industries pose a major threat to the environment. In the present research work, the adsorption efficiency of the natural adsorbent Strychnos potatorum Linn (Fam: Loganiaceae) seeds were examined against the reactive orange-M2R dye from aqueous solution by varying the process conditions such as contact time, pH, adsorbent dosage, and initial dye concentration on adsorption of anionic azo dye. This study compares different types of artificial neural networks which are feedforward artificial neural network (FANN) and nonlinear autoregressive exogenous (NARX) model to predict the efficiency of a cost-effective natural adsorbent Strychnos potatorum Linn seeds on removing reactive orange-M2R dye from aqueous solution. Twelve training algorithms of neural network were compared, and the prediction on the adsorption performance of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds was evaluated by using the root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and accuracy. For FANN model, Levenberg-Marquardt (LM) backpropagation with 19 hidden neurons was selected as the optimum FANN model, with R2 of 0.994 and accuracy of 87.20%, 98.21%, and 66.60% for training, testing, and validation datasets, respectively. For NARX model, LM with 8 hidden neurons was selected as the most suitable training algorithm, with R2 value of more than 0.99 and accuracy of 88.00%, 90.91%, and 75.00% for training, testing, and validation datasets, respectively. NARX model accurately predicted the adsorption of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds with better performance than FANN model.


Asunto(s)
Strychnos , Adsorción , Compuestos Azo , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Cinética , Redes Neurales de la Computación , Semillas
5.
Int J Biol Macromol ; 152: 1098-1107, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751696

RESUMEN

In this paper, a novel method for simultaneous enhancement of catalytic activity and reusability of laccase was carried out to overcome the limitations on industrial application of laccase. The immobilization of laccase onto copper ferrite magnetic nanoparticles (CuMNPs) and ferrite magnetic nanoparticles (MNPs) were optimized at 50 mM glutaraldehyde concentration and 1:5 enzyme:nanoparticles (NPs) ratio for 9 h of cross-linking time, yielding a maximum activity recovery of 94.68 ± 0.92% and 89.78 ± 1.24%, respectively. The laccase immobilized NPs were characterized using physico-chemical methods such as SEM-EDAX, FTIR, XRD, TGA and VSM and the laccase immobilized CuMNPs showed 18% higher activity as compared to free enzyme. The prepared CuMNPs and MNPs showed superior thermal stability (50-70 °C) with t1/2 increased by 5.7 and 4.1 folds, respectively, as compared to free laccase. The laccase in immobilized forms exhibited higher kinetic potential and stable at wide temperature and pH range. In addition, laccase immobilized NPs retained more than 70% residual activity during reuse up to 6 cycles and storing for 20 days at 4 °C. The laccase immobilized CuMNPs showed higher delignification (43.28 ± 1.46%) on Ipomoea carnea than laccase immobilized MNPs.


Asunto(s)
Cobre/química , Enzimas Inmovilizadas/química , Compuestos Férricos/química , Lacasa/química , Lignina/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas , Glutaral/química , Concentración de Iones de Hidrógeno , Cinética , Temperatura
6.
Waste Manag ; 87: 368-374, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31109537

RESUMEN

In recent years, research is focused on finding a sustainable and eco-friendly lignocellulosic biomass for the effective production of bioethanol to meet the world's energy demand. The present study investigates the bioethanol production potential of four different lignocellulosic biomass residues viz., Saccharum arundinaceum (hardy sugar cane), Arundo donax (giant reed), Typha angustifolia (narrow-leaved cattail), and Ipomoea carnea (pink morning glory). The maximum reducing sugar release showed 185.00 ±â€¯1.57, 213.73 ±â€¯3.47, 187.57 ±â€¯2.14, 294.08 ±â€¯3.98 mg/g and fermentation efficiency of 72.60 ±â€¯8.17%, 82.59 ±â€¯7.42%, 77.45 ±â€¯7.35%, and 85.04 ±â€¯8.37% which was analyzed by estimating the percentage of bioethanol yield were achieved for Saccharum arundinaceum, Arundo donax, Typha angustifolia, and Ipomoea carnea, respectively. The chemical composition of biomass was characterized using National Renewable Energy Limited (NREL) protocol. The effect of ultrasound (US)-assisted alkaline pre-treatment on the four biomasses was characterized by different techniques. The cavitation phenomena of US-assisted alkaline pre-treatment was evident from the decreased value of lignin percentage, increased surface porosity and area, changes in crystallinity index (CrI) values and in the functional groups of biomass. The results revealed that all the four lignocellulosic biomass residues could be utilized as an effective and sustainable source for the production of bioethanol using US-assisted sodium hydroxide as a pre-treatment tool.


Asunto(s)
Biocombustibles , Etanol , Biomasa , Fermentación , Hidrólisis , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...