Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 182: 2019-2023, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34081955

RESUMEN

An O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide (LPS) of Pseudomonas donghuensis SVBP6, a bacterium with a broad-spectrum antifungal activity in vitro, particularly that against Macrophomina phaseolina. This latter is one of the most virulent and dangerous pathogens of plants, including soybean which is an economically important crop in Argentina today. The OPS was studied by sugar analysis and spectroscopy (1D and 2D 1H and 13C NMR) showing the following trisaccharide repeating unit: →6)-ɑ-D-ManpNAc-(1 â†’ 3)-ß-l-Rhap-(1 â†’ 4)-ß-D-Glcp-(1→. The crude LPS, the purified LPS and the O-chain were assayed for their antifungal activity against M. phaseolina at 25, 50, 100, and 200 µg plug-1. The results showed that the crude LPS best inhibition was at 200 µg plug-1, able to inhibit the fungus growth by about 45%, while purified LPS and the corresponding OPS, in the same condition, reduced fungus growth by 65%, and 75%, respectively. Furthermore, the purified LPS and OPS significantly reduced the growth of M. phaseolina already at 100 µg plug-1 compared to the crude LPS. The structure of the O-chain is unique among the bacterial LPS and this is the first time that both the antifungal activity of a bacterial LPS and its corresponding O-chain were described.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Pseudomonas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética
2.
Environ Microbiol ; 22(7): 2550-2563, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31984618

RESUMEN

Pseudomonas donghuensis strain SVBP6, an isolate from an agricultural plot in Argentina, displays a broad-spectrum and diffusible antifungal activity, which requires a functional gacS gene but could not be ascribed yet to known secondary metabolites typical of Pseudomonas biocontrol species. Here, we report that Tn5 mutagenesis allowed the identification of a gene cluster involved in both the fungal antagonism and the production of a soluble tropolonoid compound. The ethyl acetate extract from culture supernatant showed a dose-dependent inhibitory effect against the phytopathogenic fungus Macrophomina phaseolina. The main compound present in the organic extract was identified by spectroscopic and X-ray analyses as 7-hydroxytropolone (7HT). Its structure and tautomerism was confirmed by preparing the two key derivatives 2,3-dimethoxy- and 2,7-dimethoxy-tropone. 7HT, but not 2,3- or 2,7-dimethoxy-tropone, mimicked the fungal inhibitory activity of the ethyl acetate extract from culture supernatant. The activity of 7HT, as well as its production, was barely affected by the presence of up to 50 µM added iron (Fe+2 ). To summarize, P. donghuensis SVBP6 produces 7HT under the positive control of the Gac-Rsm cascade and is the main active metabolite responsible for the broad-spectrum inhibition of different phytopathogenic fungi.


Asunto(s)
Antibiosis/genética , Antifúngicos/metabolismo , Ascomicetos/crecimiento & desarrollo , Pseudomonas/metabolismo , Tropolona/análogos & derivados , Antibiosis/fisiología , Argentina , Proteínas Bacterianas/genética , Mutagénesis/efectos de los fármacos , Pseudomonas/genética , Factores de Transcripción/genética , Transposasas/genética , Tropolona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...