Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39357790

RESUMEN

HYPOTHESIS: For metastatic non-small cell lung cancer (NSCLC), the addition of radiotherapy (RT) to immune checkpoint inhibitor (ICI) therapy could have synergistic anti-cancer effects and address the most threatening tumors. We posited that the addition of high-dose RT to ICI could prolong progression-free survival (PFS). METHODS: In this single arm phase 2 trial, 45 patients with metastatic NSCLC who had received an anti-PD-1/anti-PD-L-1 ICI for 4+ weeks were enrolled from July 2017-May 2021. Patients received high-dose RT to 1-4 extracranial tumors and continued ICI until progression or unacceptable toxicity. The primary endpoint was PFS at 24 weeks, comparing to a historical control rate of 35%. RESULTS: Of 44 evaluable patients, median age was 71, 75% had adenocarcinoma, 64% had polymetastatic disease, and 85% of cancers with known PD-L1 percentage were PD-L1 positive. Median number of treated tumors was two and most common dose was 40 Gy in 10 fractions (41/81 tumors). Median follow-up was 23.3 months. The trial met the primary outcome: 24-week PFS was 60% (95% CI 44-75%), higher than the historical control rate (p<0.001). Median PFS was 6.9 months (95% CI 4.0-13.5 mo) and median OS was 27.4 months (95% CI 20.4-not reached). Several patients with pre-study disease progression on ICI treatment achieved durable responses to study treatment, up to 53 months. Local recurrence rate was low: cumulative incidence of 5% at one, two, and three years. Two dose-limiting toxicities were observed (5%), including one grade 5 pneumonitis. CONCLUSIONS: The strategy improved 24-week PFS compared to historical controls receiving ICI alone. The excellent local control supports the efficacy of high-dose RT in addressing macroscopic disease.

2.
Curr Probl Cancer ; 53: 101133, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260124

RESUMEN

Rearrangements involving the ROS1 gene are infrequent in non-small cell lung cancer (NSCLC) but represent an important targetable driver alteration. Occurring most commonly in patients with adenocarcinoma who have a light or never smoking history, ROS1 rearrangements can be identified by either fluorescence in-situ hybridization (FISH) or next-generation sequencing techniques. Multiple tyrosine kinase inhibitors (TKIs) are now available for the effective treatment of ROS1-rearranged NSCLC in the metastatic setting including crizotinib, entrectinib, and repotrectinib as first-line therapy options. In addition, newer targeted therapies with increased selectivity for ROS1 over other targets are also emerging. As treatment of the disease continues to evolve, understanding the clinical course of patients with ROS1-rearranged NSCLC as well as the data supporting the latest therapy options is key to timely, effective, and longitudinal care.

3.
J Clin Oncol ; 42(30): 3606-3617, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047224

RESUMEN

PURPOSE: Newer-generation tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements have demonstrated high CNS activity. The optimal use of up-front stereotactic radiosurgery (SRS) for brain metastases (BM) in patients eligible for CNS-penetrant TKIs is controversial, and data to guide patient management are limited. MATERIALS AND METHODS: Data on TKI-naïve patients with EGFR- and ALK-driven NSCLC with BM treated with CNS-penetrant TKIs with and without up-front SRS were retrospectively collected from seven academic centers in the United States. Time-to-CNS progression and overall survival (OS) were analyzed, with multivariable adjustment in Fine & Gray and Cox proportional hazards models for clinically relevant factors. RESULTS: From 2013 to 2022, 317 patients were identified (200 TKI-only and 117 TKI + SRS). Two hundred fifty (79%) and 61 (19%) patients received osimertinib and alectinib, respectively. Patients receiving TKI + SRS were more likely to have BM ≥1 cm (P < .001) and neurologic symptoms (P < .001) at presentation. Median OS was similar between the TKI and TKI + SRS groups (median 41 v 40 months, respectively; P = .5). On multivariable analysis, TKI + SRS was associated with a significant improvement in time-to-CNS progression (hazard ratio [HR], 0.63 [95% CI, 0.42 to 0.96]; P = .033). Local CNS control was significantly improved with TKI + SRS (HR, 0.30 [95% CI, 0.16 to 0.55]; P < .001), whereas no significant differences were observed in distant CNS control. Subgroup analyses demonstrated a greater benefit from TKI + SRS in patients with BM ≥1 cm in diameter for time-to-CNS progression and CNS progression-free survival. CONCLUSION: The addition of up-front SRS to CNS-penetrant TKI improved time-to-CNS progression and local CNS control, but not OS, in patients with BM from EGFR- and ALK-driven NSCLC. Patients with larger BM (≥1 cm) may benefit the most from up-front SRS.


Asunto(s)
Quinasa de Linfoma Anaplásico , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Radiocirugia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa de Linfoma Anaplásico/genética , Masculino , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Femenino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Persona de Mediana Edad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Anciano , Estudios Retrospectivos , Adulto , Compuestos de Anilina/uso terapéutico , Anciano de 80 o más Años , Piperidinas/uso terapéutico , Acrilamidas/uso terapéutico , Carbazoles/uso terapéutico , Mutación , Indoles , Pirimidinas
4.
Clin Lung Cancer ; 25(2): e92-e100.e4, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38065707

RESUMEN

PURPOSE/OBJECTIVES: Adoption of hypofractionated accelerated radiation therapy (HART) with concurrent chemotherapy has been limited by toxicity concerns. We aimed to describe outcomes of patients treated with HART and concurrent chemotherapy and to evaluate dosimetry to organs at risk to guide patient selection. MATERIALS/METHODS: We evaluated a retrospective cohort of NSCLC patients treated with concurrent chemotherapy with HART (>2.2 Gy per fraction) or standard fractionated radiation therapy (SFRT; 2-2.2 Gy fractions). Dosimetric parameters to key organs at risk were compared, and toxicity, patterns of recurrence and survival were calculated for the cohorts. RESULTS: Fifty-three patients treated with HART were compared with 100 patients treated with SFRT. Median dose per fraction for the HART cohort was 2.75 Gy (range 2.4-3 Gy). HART patients had significantly lower doses to the lung, heart, and esophagus due to patient selection. The HART group and had rates of grade 2+ pneumonitis (9.4 vs. 19%, P = .16) and grade 2+ esophagitis (20.8 vs. 45%, P < .01) that compared favorably to SFRT. Cumulative incidence of in-field recurrence trended lower in the HART cohort (7.6% vs. 23.1%, P = .058). Among the HART group, 88.7% (47/53) met the newly proposed lung constraints based on the degree of hypofractionation CONCLUSION: In select patients with favorable dosimetry to organs at risk, definitive HART with concurrent chemotherapy achieved excellent local control with low toxicity. These results are being used to inform a prospective study on the safety and efficacy of HART with concurrent chemotherapy for select NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Hipofraccionamiento de la Dosis de Radiación , Estudios Retrospectivos , Estudios Prospectivos , Selección de Paciente
5.
Clin Lung Cancer ; 25(2): 186-189, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38040540

RESUMEN

INTRODUCTION: Prior attempts to escalate radiation dose for non-small cell lung cancer (NSCLC) have not improved survival. Given the high risk for cardiopulmonary toxicity with treatment and heterogenous presentation of locally advanced NSCLC, it is unlikely that a single dose regimen is optimal for all patients. This phase I/II trial aims to evaluate a novel treatment approach where the level of accelerated hypofractionation is determined by the predicted toxicity from dose to organs at risk (OARs). METHODS: Patients ≥ 18 years old with lung cancer planned for fractionated radiotherapy to the lung with concurrent chemotherapy will be eligible. Radiation therapy (RT) will be delivered to a total dose of 60 to 66 Gy in 30, 25, or 20 fractions depending on the ability to meet constraints to key organs at risk including the lungs, heart, and esophagus. The primary endpoint is high grade pulmonary, esophageal, or cardiac toxicity. A Bayesian optimized design is used to determine stopping boundaries and evaluate the primary endpoint. CONCLUSION: PACER will evaluate the safety and feasibility of personalized accelerated chemoradiotherapy for lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adolescente , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Teorema de Bayes , Quimioradioterapia/métodos , Pulmón , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase I como Asunto
6.
J Thorac Oncol ; 19(3): 500-506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012986

RESUMEN

INTRODUCTION: Amivantamab-vmjw (amivantamab) is a bispecific EGFR/MET antibody approved for patients with advanced NSCLC with EGFR exon 20 insertion mutations, after prior therapy. Nevertheless, the benefits and safety of amivantamab in other EGFR-mutant lung cancer, with or without osimertinib, and with concurrent radiation therapy, are less known. METHODS: We queried the MD Anderson Lung Cancer GEMINI, Fred Hutchinson Cancer Research Center, University of California Davis Comprehensive Cancer Center, and Stanford Cancer Center's database for patients with EGFR-mutant NSCLC treated with amivantamab, not on a clinical trial. The data analyzed included initial response, duration of treatment, and concomitant radiation safety in overall population and prespecified subgroups. RESULTS: A total of 61 patients received amivantamab. Median age was 65 (31-81) years old; 72.1% were female; and 77% were patients with never smoking history. Median number of prior lines of therapies was four. On the basis of tumor's EGFR mutation, 39 patients were in the classical mutation cohort, 15 patients in the exon 20 cohort, and seven patients in the atypical cohort. There were 37 patients (58.7%) who received amivantamab concomitantly with osimertinib and 25 patients (39.1%) who received concomitant radiation. Furthermore, 54 patients were assessable for response in the overall population; 19 patients (45.2%) had clinical response and disease control rate (DCR) was 64.3%. In the classical mutation cohort of the 33 assessable patients, 12 (36.4%) had clinical response and DCR was 48.5%. In the atypical mutation cohort, six of the seven patients (85.7%) had clinical response and DCR was 100%. Of the 13 assessable patients in the exon 20 cohort, five patients (35.7%) had clinical response and DCR was 64.3%. Adverse events reported with amivantamab use were similar as previously described in product labeling. No additional toxicities were noted when amivantamab was given with radiation with or without osimertinib. CONCLUSIONS: Our real-world multicenter analysis revealed that amivantamab is a potentially effective treatment option for patients with EGFR mutations outside of exon 20 insertion mutations. The combination of osimertinib with amivantamab is safe and feasible. Radiation therapy also seems safe when administered sequentially or concurrently with amivantamab.


Asunto(s)
Acrilamidas , Anticuerpos Biespecíficos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Femenino , Anciano , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Antineoplásicos/uso terapéutico , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
JAMA Netw Open ; 6(9): e2335813, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751203

RESUMEN

Importance: Despite recent breakthroughs in therapy, advanced lung cancer still poses a therapeutic challenge. The survival profile of patients with metastatic lung cancer remains poorly understood by metastatic disease type (ie, de novo stage IV vs distant recurrence). Objective: To evaluate the association of metastatic disease type on overall survival (OS) among patients with non-small cell lung cancer (NSCLC) and to identify potential mechanisms underlying any survival difference. Design, Setting, and Participants: Cohort study of a national US population based at a tertiary referral center in the San Francisco Bay Area using participant data from the National Lung Screening Trial (NLST) who were enrolled between 2002 and 2004 and followed up for up to 7 years as the primary cohort and patient data from Stanford Healthcare (SHC) for diagnoses between 2009 and 2019 and followed up for up to 13 years as the validation cohort. Participants from NLST with de novo metastatic or distant recurrent NSCLC diagnoses were included. Data were analyzed from January 2021 to March 2023. Exposures: De novo stage IV vs distant recurrent metastatic disease. Main Outcomes and Measures: OS after diagnosis of metastatic disease. Results: The NLST and SHC cohort consisted of 660 and 180 participants, respectively (411 men [62.3%] vs 109 men [60.6%], 602 White participants [91.2%] vs 111 White participants [61.7%], and mean [SD] age of 66.8 [5.5] vs 71.4 [7.9] years at metastasis, respectively). Patients with distant recurrence showed significantly better OS than patients with de novo metastasis (adjusted hazard ratio [aHR], 0.72; 95% CI, 0.60-0.87; P < .001) in NLST, which was replicated in SHC (aHR, 0.64; 95% CI, 0.43-0.96; P = .03). In SHC, patients with de novo metastasis more frequently progressed to the bone (63 patients with de novo metastasis [52.5%] vs 19 patients with distant recurrence [31.7%]) or pleura (40 patients with de novo metastasis [33.3%] vs 8 patients with distant recurrence [13.3%]) than patients with distant recurrence and were primarily detected through symptoms (102 patients [85.0%]) as compared with posttreatment surveillance (47 patients [78.3%]) in the latter. The main finding remained consistent after further adjusting for metastasis sites and detection methods. Conclusions and Relevance: In this cohort study, patients with distant recurrent NSCLC had significantly better OS than those with de novo disease, and the latter group was associated with characteristics that may affect overall survival. This finding can help inform future clinical trial designs to ensure a balance for baseline patient characteristics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Niño , Estudios de Cohortes , Instituciones de Salud , Pacientes
9.
JACC CardioOncol ; 5(1): 85-98, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36875913

RESUMEN

Background: Trastuzumab improves outcomes in patients with HER2-overexpressing malignancies but is associated with decreases in left ventricular ejection fraction. Heart failure (HF) risks from other anti-HER2 therapies are less clear. Objectives: Using World Health Organization pharmacovigilance data, the authors compared HF odds across anti-HER2 regimens. Methods: In VigiBase, 41,976 patients had adverse drug reactions (ADRs) with anti-HER2 monoclonal antibodies (trastuzumab, n = 16,900; pertuzumab, n = 1,856), antibody-drug conjugates (trastuzumab emtansine [T-DM1], n = 3,983; trastuzumab deruxtecan, n = 947), and tyrosine kinase inhibitors (afatinib, n = 10,424; lapatinib, n = 5,704; neratinib, n = 1,507; tucatinib, n = 655); additionally, 36,052 patients had ADRs with anti-HER2-based combination regimens. Most patients had breast cancer (monotherapies, n = 17,281; combinations, n = 24,095). Outcomes included comparison of HF odds with each monotherapy relative to trastuzumab, within each therapeutic class, and among combination regimens. Results: Of 16,900 patients with trastuzumab-associated ADRs, 2,034 (12.04%) had HF reports (median time to onset 5.67 months; IQR: 2.85-9.32 months) compared with 1% to 2% with antibody-drug conjugates. Trastuzumab had higher odds of HF reporting relative to other anti-HER2 therapies collectively in the overall cohort (reporting OR [ROR]: 17.37; 99% CI: 14.30-21.10) and breast cancer subgroup (ROR: 17.10; 99% CI: 13.12-22.27). Pertuzumab/T-DM1 had 3.4 times higher odds of HF reporting than T-DM1 monotherapy; tucatinib/trastuzumab/capecitabine had similar odds as tucatinib. Among metastatic breast cancer regimens, HF odds were highest with trastuzumab/pertuzumab/docetaxel (ROR: 1.42; 99% CI: 1.17-1.72) and lowest with lapatinib/capecitabine (ROR: 0.09; 99% CI: 0.04-0.23). Conclusions: Trastuzumab and pertuzumab/T-DM1 had higher odds of HF reporting than other anti-HER2 therapies. These data provide large-scale, real-world insight into which HER2-targeted regimens would benefit from left ventricular ejection fraction monitoring.

10.
JCO Oncol Pract ; 19(2): e176-e184, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36395436

RESUMEN

PURPOSE: Patients with metastatic cancer benefit from advance care planning (ACP) conversations. We aimed to improve ACP using a computer model to select high-risk patients, with shorter predicted survival, for conversations with providers and lay care coaches. Outcomes included ACP documentation frequency and end-of-life quality measures. METHODS: In this study of a quality improvement initiative, providers in four medical oncology clinics received Serious Illness Care Program training. Two clinics (thoracic/genitourinary) participated in an intervention, and two (cutaneous/sarcoma) served as controls. ACP conversations were documented in a centralized form in the electronic medical record. In the intervention, providers and care coaches received weekly e-mails highlighting upcoming clinic patients with < 2 year computer-predicted survival and no prior prognosis documentation. Care coaches contacted these patients for an ACP conversation (excluding prognosis). Providers were asked to discuss and document prognosis. RESULTS: In the four clinics, 4,968 clinic visits by 1,251 patients met inclusion criteria (metastatic cancer with no prognosis previously documented). In their first visit, 28% of patients were high-risk (< 2 year predicted survival). Preintervention, 3% of both intervention and control clinic patients had ACP documentation during a visit. By intervention end (February 2021), 35% of intervention clinic patients had ACP documentation compared with 3% of control clinic patients. Providers' prognosis documentation rate also increased in intervention clinics after the intervention (2%-27% in intervention clinics, P < .0001; 0%-1% in control clinics). End-of-life care intensity was similar in intervention versus control clinics, but patients with ≥ 1 provider ACP edit met fewer high-intensity care measures (P = .04). CONCLUSION: Combining a computer prognosis model with care coaches increased ACP documentation.


Asunto(s)
Planificación Anticipada de Atención , Neoplasias , Cuidado Terminal , Humanos , Neoplasias/terapia , Comunicación , Aprendizaje Automático
11.
Fed Pract ; 39(Suppl 3): S56-S62, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36426106

RESUMEN

Background: In patients with multiple myeloma, thrombotic microangiopathy is a rare adverse event associated with proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib. Case Presentation: Two patients with multiple myeloma who presented with carfilzomib-induced thrombotic microangiopathy received eculizumab with subsequent stabilization of renal function. Conclusions: Given the overall rarity of this adverse event, the simultaneous presentation of these 2 cases was unexpected. These cases underscores the need for heightened awareness in clinical practice of thrombotic microangiopathy. The potential role of eculizumab as a therapeutic treatment in the setting of thrombotic microangiopathy requires further investigation.

12.
JCO Precis Oncol ; 6: e2200220, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201713

RESUMEN

PURPOSE: Brain metastasis is common in lung cancer, and treatment of brain metastasis can lead to significant morbidity. Although early detection of brain metastasis may improve outcomes, there are no prediction models to identify high-risk patients for brain magnetic resonance imaging (MRI) surveillance. Our goal is to develop a machine learning-based clinicogenomic prediction model to estimate patient-level brain metastasis risk. METHODS: A penalized regression competing risk model was developed using 330 patients diagnosed with lung cancer between January 2014 and June 2019 and followed through June 2021 at Stanford HealthCare. The main outcome was time from the diagnosis of distant metastatic disease to the development of brain metastasis, death, or censoring. RESULTS: Among the 330 patients, 84 (25%) developed brain metastasis over 627 person-years, with a 1-year cumulative brain metastasis incidence of 10.2% (95% CI, 6.8 to 13.6). Features selected for model inclusion were histology, cancer stage, age at diagnosis, primary site, and RB1 and ALK alterations. The prediction model yielded high discrimination (area under the curve 0.75). When the cohort was stratified by risk using a 1-year risk threshold of > 14.2% (85th percentile), the high-risk group had increased 1-year cumulative incidence of brain metastasis versus the low-risk group (30.8% v 6.1%, P < .01). Of 48 high-risk patients, 24 developed brain metastasis, and of these, 12 patients had brain metastasis detected more than 7 months after last brain MRI. Patients who missed this 7-month window had larger brain metastases (58% v 33% largest diameter > 10 mm; odds ratio, 2.80, CI, 0.51 to 13) versus those who had MRIs more frequently. CONCLUSION: The proposed model can identify high-risk patients, who may benefit from more intensive brain MRI surveillance to reduce morbidity of subsequent treatment through early detection.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Proteínas Tirosina Quinasas Receptoras , Estudios Retrospectivos
13.
J Neurooncol ; 160(1): 233-240, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36227422

RESUMEN

PURPOSE: Although osimertinib has excellent intracranial activity in metastatic non-small cell lung cancer (NSCLC) with exon 19 deletion or L858R EGFR alterations, measures of local control of brain metastases are less well-reported. We describe lesion-level outcomes of brain metastases treated with osimertinib alone. METHODS: We retrospectively reviewed patients with EGFR-mutant NSCLC with untreated brain metastasis measuring ≥ 5 mm at the time of initiating osimertinib. Cumulative incidence of local recurrence in brain (LRiB) was calculated with death as a competing risk, and univariable and multivariable analyses were conducted to identify factors associated with LRiB. RESULTS: We included 284 brain metastases from 37 patients. Median follow-up was 20.1 months. On initial MRI after starting osimertinib, patient-level response was complete response (CR) in 11 (15%), partial response (PR) in 33 (45%), stable disease (SD) in 18 (25%) and progressive disease (PD) in 11 (15%). The 1-year cumulative incidence of LRiB was 14% (95% CI 9.9-17.9) and was significantly different in patients with a CR (0%), PR (4%), and SD (11%; p = 0.02). Uncontrolled primary tumor (adjusted hazard ratio [aHR] 3.78, 95% CI 1.87-7.66; p < 0.001), increasing number of prior systemic therapies (aHR 2.12, 95% CI 1.49-3.04; p < 0.001), and higher ECOG score (aHR 7.8, 95% CI 1.99-31.81; p = 0.003) were associated with LRiB. CONCLUSIONS: Although 1-year cumulative incidence of LRiB is < 4% with a CR or PR, 1-year cumulative incidence of LRiB is over 10% for patients with less than a PR to osimertinib on initial MRI. These patients should be followed closely for need for additional treatment such as stereotactic radiosurgery.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Humanos , Compuestos de Anilina/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
15.
JCO Precis Oncol ; 6: e2200107, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35977349

RESUMEN

PURPOSE: Non-V600 mutations comprise approximately 35% of all BRAF mutations in cancer. Many of these mutations have been identified as oncogenic drivers and can be classified into three classes according to molecular characteristics. Consensus treatment strategies for class 2 and 3 BRAF mutations have not yet been established. METHODS: We performed a systematic review and meta-analysis with published reports of individual patients with cancer harboring class 2 or 3 BRAF mutations from 2010 to 2021, to assess treatment outcomes with US Food and Drug Administration-approved mitogen-activated protein kinase (MAPK) pathway targeted therapy (MAPK TT) according to BRAF class, cancer type, and MAPK TT type. Coprimary outcomes were response rate and progression-free survival. RESULTS: A total of 18,167 studies were screened, identifying 80 studies with 238 patients who met inclusion criteria. This included 167 patients with class 2 and 71 patients with class 3 BRAF mutations. Overall, 77 patients achieved a treatment response. In both univariate and multivariable analyses, response rate and progression-free survival were higher among patients with class 2 compared with class 3 mutations, findings that remain when analyses are restricted to patients with melanoma or lung primary cancers. MEK ± BRAF inhibitors demonstrated greater clinical activity in class 2 compared with class 3 BRAF-mutant tumors than BRAF or EGFR inhibitors. CONCLUSION: This meta-analysis suggests that MAPK TTs have clinical activity in some class 2 and 3 BRAF-mutant cancers. BRAF class may dictate responsiveness to current and emerging treatment strategies, particularly in melanoma and lung cancers. Together, this analysis provides clinical validation of predictions made on the basis of a mutation classification system established in the preclinical literature. Further evaluation with prospective clinical trials is needed for this population.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos/genética , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Estados Unidos
16.
Clin Lung Cancer ; 23(6): 498-509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35753988

RESUMEN

INTRODUCTION: About 3%-5% of mNSCLC have ERBB2 (HER2) alterations, but currently, there are no FDA-approved targeted therapies for this indication. We compared treatment response between trastuzumab-based and non-targeted regimens in ERBB2-mutant mNSCLC. METHODS: This retrospective, single-institution study included patients with mNSCLC with ERBB2 alterations identified by next-generation sequencing. Best overall response was determined using Response Evaluation Criteria in Solid Tumors 1.1. RESULTS: We identified 3 groups of patients: ERBB2-mutant/EGFR-wildtype mNSCLC (n = 33), ERBB2-amplified/EGFR-wildtype mNSCLC without concurrent ERBB2 mutations (n = 6), and ERBB2-altered/EGFR-mutant mNSCLC (n = 8). Observed mutations included A775_G776insYVMA (n = 23), Gly778_Pro780dup (n = 4), Ser310Phe (n = 3), and others (n = 5). Among the 33 with ERBB2-mutant/EGFR-wildtype mNSCLC, those with and without A775_G776insYVMA had significantly different median overall survival (OS) of 17.7 and 52.9 months, respectively (Cox regression multivariable HR: 5.03, 95% CI: 1.37-18.51, P = .02). In those with mNSCLC with A775_G776insYVMA, trastuzumab-based therapies were associated with greater OS (20.3 vs. 9.8 months; multivariable HR: 0.19, 95% CI: 0.04-0.87, P = .032). Objective response and disease control rates (median tumor size change) in the 33 patients with ERBB2-mutant/EGFR-wildtype mNSCLC were 40.0% and 80.0% (-35.8%), respectively, for patients treated with trastuzumab deruxtecan; 0% and 30.0% (-5.2%) for trastuzumab emtansine; and 7.1% and 50.0% (-13.0%) for trastuzumab/chemotherapy combinations. CONCLUSION: In ERBB2-mutant/EGFR-wildtype mNSCLC, while most trastuzumab-based regimens had modest activity in this real-world analysis, trastuzumab deruxtecan had highest response rates and best tumor size reduction. Receipt of any trastuzumab-based regimen was associated with greater OS with A775_G776insYVMA. There remains an unmet need for approved targeted therapies for ERBB2-mutant/EGFR-wildtype NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ado-Trastuzumab Emtansina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-2/genética , Estudios Retrospectivos , Trastuzumab/uso terapéutico
17.
Int J Radiat Oncol Biol Phys ; 114(4): 603-610, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654305

RESUMEN

PURPOSE: Because of the limitations of current staging systems and evolving definitions, there are limited data on oligometastatic non-small cell lung cancer (NSCLC) epidemiology. The purpose of this study was to evaluate metastatic disease burden and the incidence of oligometastatic disease using recent clinical trial eligibility criteria. METHODS AND MATERIALS: A cohort of patients with metastatic NSCLC, diagnosed from 2016 to 2019, were randomly sampled from a curated tumor registry. Definitions for oligometastatic disease were obtained from relevant clinical trials. The Stanford Cancer Institute Research Database was used to identify baseline patient factors, systemic and local therapy, extent and location of metastatic lesions, and survival outcomes. RESULTS: Among 120 patients presenting with metastatic NSCLC, the majority had de novo metastatic disease (75%) with a median of 4 metastatic lesions involving 3 organ systems. Of these, 37.5% would have been eligible for at least 1 oligometastatic trial, with 28.3% meeting criteria for the MD Anderson Cancer Center trial, 20.0% for NRG-LU002, 6.7% for SINDAS, and 16.7% for SABR-COMET. By adding malignant pleural effusions and early progression as exclusionary criteria, only 54.1% of patients with ≤3 synchronous metastases were eligible for consideration of local therapy. Early progression on systemic therapy was associated with worse survival (10.0 vs 42.4 months; P < .001), whereas presence of malignant pleural effusions was not. Of those tumors identified as oligometastatic, 44.4% received local therapy and 28.9% underwent ablative therapy to all sites. There was a trend toward greater overall survival (44.4 vs 24.9 months; P = .055) and progression-free survival (8.0 vs 5.4 months; P = .06) in patients meeting eligibility for at least 1 oligometastatic trial. CONCLUSIONS: Around 48% of patients with metastatic NSCLC had ≤3 metastases at presentation and 28% met clinical trial criteria for oligometastatic disease. Future research is needed to better define the oligometastatic state and identify patients most likely to benefit from local therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Incidencia , Neoplasias Pulmonares/patología , Supervivencia sin Progresión , Radiocirugia/métodos
18.
Transl Lung Cancer Res ; 11(5): 902-909, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35693284

RESUMEN

Background: Anaplastic lymphoma kinase (ALK) fusion is an important oncogenic driver in non-small cell lung cancer (NSCLC). Reports on the intergenic region (IGR) as an ALK fusion partner are rare. Here, we report the case of a patient with advanced NSCLC harboring a human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1)-ALK fusion that responded effectively to alectinib. Case Description: A 60-year-old non-smoking male was referred with a 3-month history of productive cough secondary to lung adenocarcinoma metastatic to mediastinal lymph nodes, brain, liver, and bone (T2N3M1c, stage IVB). Next-generation sequencing identified an IGR (upstream HIVEP1-) ALK fusion, and immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) results were consistent with an ALK-positive tumor. The patient was subsequently started on alectinib, with no obvious adverse reaction. After 1 month of therapy, the patient achieved significantly remission of the clinical symptoms and had led to an ongoing partial response (PR) lasting >33 months. Conclusions: Our experience highlights the efficacy of alectinib in a patient with HIVEP1-ALK fusion positive NSCLC with multiple metastases including brain disease, and the need for multiple genetic testing methods to verify the oncogenicity of ALK fusions prior to treatment. It could provide useful guidance for the treatment of similar cases in the future.

20.
J Thorac Oncol ; 17(1): 116-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455066

RESUMEN

INTRODUCTION: Management of central nervous system (CNS) metastases in patients with driver-mutated NSCLC has traditionally incorporated both tyrosine kinase inhibitors (TKIs) and intracranial radiation. Whether next generation, CNS-penetrant TKIs can be used alone without upfront radiation, however, remains unknown. This multi-institutional retrospective analysis aimed to compare outcomes in patients with EGFR- or ALK-positive NSCLC who received CNS-penetrant TKI therapy alone versus in combination with radiation for new or progressing intracranial metastases. METHODS: Data were retrospectively collected from three academic institutions. Two treatment groups (CNS-penetrant TKI alone versus TKI + CNS radiation therapy) were compared for both EGFR- and ALK-positive cohorts. Outcome variables included time to progression, time to intracranial progression, and time to treatment failure, measured from the date of initiation of CNS-penetrant TKI therapy. RESULTS: A total of 147 patients were included (EGFR n = 94, ALK n = 52, both n = 1). In patients receiving radiation, larger metastases, neurologic symptoms, and receipt of steroids were more common. There were no significant differences between TKI and CNS radiation therapy plus TKI groups for any of the study outcomes, including time to progression (8.5 versus 6.9 mo, p = 0.13 [EFGR] and 11.4 versus 13.4 mo, p = 0.98 [ALK]), time to intracranial progression (14.8 versus 20.5 mo, p = 0.51 [EGFR] and 18.1 versus 21.8 mo, p = 0.65 [ALK]), or time to treatment failure (13.8 versus 8.6 mo, p = 0.26 [EGFR] and 13.5 versus 23.2 mo, p = 0.95 [ALK]). CONCLUSIONS: These results provide preliminary evidence that intracranial activity of CNS-penetrant TKIs may enable local radiation to be deferred in appropriately selected patients without negatively affecting progression.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Sistema Nervioso Central , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...