RESUMEN
BACKGROUND: Fibro-calcific aortic valve disease (FCAVD) is a progressive disorder characterized by the thickening and calcification of the aortic valve, eventually leading to aortic stenosis. Adiponectin and leptin, known for their anti-inflammatory and proinflammatory properties, respectively, have been implicated in cardiovascular diseases, but their associations with FCAVD are controversial. This meta-analysis aims to evaluate the relationships between adiponectin and leptin levels and FCAVD, particularly in patients with severe aortic stenosis (AS). METHODS: A systematic search was conducted across the PubMed, Scopus, and Web of Science databases to identify studies on adiponectin and leptin levels in FCAVD. The methodological quality of each study was assessed using the Newcastle-Ottawa Scale. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated, and publication bias was evaluated using Egger's test and funnel plots. RESULTS: Out of 191 articles identified, 10 studies involving 2360 patients (989 with FCAVD and 1371 controls) were included. The analysis suggested trends in the associations of lower adiponectin levels (SMD = -0.143, 95% CI: -0.344, 0.057, p = 0.161) and higher leptin levels (SMD = 0.175, 95% CI: -0.045, 0.395, p = 0.119) with FCAVD. The association remained a trend for low adiponectin but showed a significant correlation with high leptin in severe AS patients (SMD = 0.29, 95% CI: 0.036, 0.543, p = 0.025). CONCLUSION: This meta-analysis indicates a potential association between elevated leptin levels and severe aortic stenosis, while the relationship with adiponectin levels remains inconclusive. These findings highlight the need for further and dedicated research to clarify the roles of these adipokines in the pathogenesis of FCAVD and their potential roles as biomarkers for disease progression.
RESUMEN
Aims: Thoracic aortic aneurysm (TAA) that progress to acute aortic dissection is often fatal and there is no pharmacological treatment that can reduce TAA progression. We aim to evaluate statins' effects on TAA growth rate and outcomes using a meta-analysis approach. Methods and results: A detailed search related to the effects of statins on TAA was conducted according to PRISMA guidelines. The analyses of statins' effects on TAA growth rate were performed on 4 studies (n = 1850), while the impact on outcomes was evaluated on 3 studies (n = 2,867). Patients under statin treatment showed a reduced TAA growth rate (difference in means = -0.36 cm/year; 95%CI: -0.64, -0.08; p = 0.013) when compared to controls, patients not taking statins. Regarding the outcomes (death, dissection, or rupture of the aorta, and the need for operative repair), statins exhibited a protective effect reducing the number of events (log odds ratio = -0.56; 95%CI: -1.06, -0.05; p = 0.030). In vitro, the anti-fibrotic effect of atorvastatin was tested on vascular smooth muscle cells (VMSC) isolated from patients with TAA. Our results highlighted that, in transforming growth factor beta 1 (TGF-ß1) pro-fibrotic condition, VSMC expressed a significant lower amount of collagen type I alpha 1 chain (COL1A1) when treated with atorvastatin (untreated = +2.66 ± 0.23 fold-change vs. treated = +1.63 ± 0.09 fold-change; p = 0.014). Conclusion: Statins show a protective effect on TAA growth rate and adverse outcomes in patients with TAA, possibly via their anti-fibrotic properties on VSMC. Given the current lack of effective drug treatments for TAA, we believe our findings highlight the need for more in-depth research to explore the potential benefits of statins in this context.
RESUMEN
BACKGROUND: Patients with acute myocardial infarction (AMI) are at increased risk of recurrent cardiovascular events. Non-stenotic aortic valve fibro-calcific remodeling (AVSc), reflecting systemic damage, may serve as a new marker of risk. OBJECTIVES: To stratify subgroups of AMI patients with specific probabilities of recurrent AMI and to evaluate the importance of AVSc in this setting. METHODS: Consecutive AMI patients (n = 2530) were admitted at Centro Cardiologico Monzino (2010-2019) and followed up for 5 years. Patients were divided into study (n = 1070) and test (n = 966) cohorts. Topological data analysis (TDA) was used to stratify patient subgroups, while Kaplan-Meier and Cox regressions analyses were used to evaluate the significance of baseline characteristics. RESULTS: TDA identified 11 subgroups of AMI patients with specific baseline characteristics. Two subgroups showed the highest rate of reinfarction after 5 years from the indexed AMI with a combined hazard ratio (HR) of 3.8 (95%CI: 2.7-5.4) compared to the other subgroups. This was confirmed in the test cohort (HR = 3.1; 95%CI: 2.2-4.3). These two subgroups were mostly men, with hypertension and dyslipidemia, who exhibit higher prevalence of AVSc, higher levels of high-sensitive c-reactive protein and creatinine. In the year-by-year analysis, AVSc, adjusted for all confounders, showed an independent association with the increased risk of reinfarction (odds ratio of â¼2 at all time-points), in both the study and the test cohorts (all p < 0.01). CONCLUSIONS: AVSc is a crucial variable for identifying AMI patients at high risk of recurrent AMI and its presence should be considered when assessing the management of AMI patients. The inclusion of AVSc in risk stratification models may improve the accuracy of predicting the likelihood of recurrent AMI, leading to more personalized treatment decisions.
We wanted to understand the factors that make some acute myocardial infarction (AMI) patients more likely to experience recurrent infarction after leaving the hospital. Specifically, we asked whether a heart valve condition called non-stenotic aortic valve fibro-calcific remodeling (AVSc) could be a crucial factor. Our study used advanced data analysis techniques, including topological data analysis (TDA), to explore this question. We unveil that AVSc is indeed a significant predictor of recurrent infarction in AMI patients. Our findings suggest that the presence of aortic valve remodeling should be taken into account when assessing the risk of recurrent AMI and managing these patients.
RESUMEN
BACKGROUND: Aortic valve sclerosis (AVSc) presents similar pathogenetic mechanisms to coronary artery disease and is associated with short- and long-term mortality in patients with coronary artery disease. Evidence of AVSc-specific pathophysiological traits in acute myocardial infarction (AMI) is currently lacking. Thus, we aimed to identify a blood-based transcriptional signature that could differentiate AVSc from no-AVSc patients during AMI. METHODS: Whole-blood transcriptome of AVSc (n=44) and no-AVSc (n=66) patients with AMI was assessed by RNA sequencing on hospital admission. Feature selection, differential expression, and enrichment analyses were performed to identify gene expression patterns discriminating AVSc from no-AVSc and infer functional associations. Multivariable Cox regression analysis was used to estimate the hazard ratios of cardiovascular events in AVSc versus no-AVSc patients. RESULTS: This cross-sectional study identified a panel of 100 informative genes capable of distinguishing AVSc from no-AVSc patients with 94% accuracy. Further analysis revealed significant mean differences in 143 genes, of which 30 genes withstood correction for age and previous AMI or coronary interventions. Functional inference unveiled a significant association between AVSc and key biological processes, including acute inflammatory responses, type I IFN (interferon) response, platelet activation, and hemostasis. Notably, patients with AMI with AVSc exhibited a significantly higher incidence of adverse cardiovascular events during a 10-year follow-up period, with a full adjusted hazard ratio of 2.4 (95% CI, 1.3-4.5). CONCLUSIONS: Our findings shed light on the molecular mechanisms underlying AVSc and provide potential prognostic insights for patients with AMI with AVSc. During AMI, patients with AVSc showed increased type I IFN (interferon) response and earlier adverse cardiovascular outcomes. Novel pharmacological therapies aiming at limiting type I IFN response during or immediately after AMI might improve poor cardiovascular outcomes of patients with AMI with AVSc.
Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/patología , Válvula Aórtica/patología , Transcriptoma , Esclerosis/patología , Estudios Transversales , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Infarto del Miocardio/epidemiología , Inmunidad , InterferonesRESUMEN
BACKGROUND: Epicardial adipose tissue (EAT) plays an important role in cardiometabolic risk. EAT is a modifiable risk factor and could be a potential therapeutic target for drugs that already show cardiovascular benefits. The aim of this study is to evaluate the effect of cardiometabolic drugs on EAT reduction. METHODS: A detailed search related to the effect on EAT reduction due to cardiometabolic drugs, such as glucagon-like peptide-1 receptor agonist (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT2-i), and statins was conducted according to PRISMA guidelines. Eighteen studies enrolling 1064 patients were included in the qualitative and quantitative analyses. RESULTS: All three analyzed drug classes, in particular GLP-1 RA, show a significant effect on EAT reduction (GLP-1 RA standardize mean difference (SMD) = - 1.005; p < 0.001; SGLT2-i SMD = - 0.552; p < 0.001, and statin SMD = - 0.195; p < 0.001). The sensitivity analysis showed that cardiometabolic drugs strongly benefit EAT thickness reduction, measured by ultrasound (overall SMD of - 0.663; 95%CI - 0.79, - 0.52; p < 0.001). Meta-regression analysis revealed younger age and higher BMI as significant effect modifiers of the association between cardiometabolic drugs and EAT reduction for both composite effect and effect on EAT thickness, (age Z: 3.99; p < 0.001 and Z: 1.97; p = 0.001, respectively; BMI Z: - 4.40; p < 0.001 and Z: - 2.85; p = 0.004, respectively). CONCLUSIONS: Cardiometabolic drugs show a significant beneficial effect on EAT reduction. GLP-1 RA was more effective than SGLT2-i, while statins had a rather mild effect. We believe that the most effective treatment with these drugs should target younger patients with high BMI.
Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Péptido 1 Similar al Glucagón , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Obesidad , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéuticoRESUMEN
AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of plasma low-density lipoprotein cholesterol (LDL-C) concentration, and its inhibition reduces the risk of atherosclerotic cardiovascular disease (ASCVD). We aimed to assess the sex-differential effect of either pharmacological or genetic inhibition of PCSK9 on LDL-C levels. METHODS AND RESULTS: We meta-analyzed six real-life studies (1216 men and 641 women) that investigated the effects of PCSK9 monoclonal antibodies (mAbs) on LDL-C reduction in men and women. Despite higher LDL-C levels in women at baseline [mean difference (MD) = 17.4 mg/dL, P < 0.0001, women = 175 mg/dL vs. men = 152 mg/dL], the LDL-C reduction under PCSK9 mAb treatment was significantly greater in men (MD = 7.6 mg/dL, 95% confidence interval: 2.7-12.4, P = 0.002) than in women.We tested the sex-related association of the loss-of-function variant PCSK9-R46L with LDL-C plasma levels in 382 813 individuals (219 301 women and 163 512 men) free of lipid-lowering drugs from the UK Biobank general population cohort. The magnitude of LDL-C reduction was larger in men than in women (mean LDL-C difference: -35 mg/dL vs. -26 mg/dL, when comparing homozygous carriers with non-carriers in men and women, respectively). The relationship between PCSK9-R46L and LDL-C was significantly dependent on sex (P for interaction = 7.2e-04). CONCLUSION: These results demonstrate by complementary approaches that the decrease in LDL-C mediated by PCSK9 inhibition is slightly, but significantly, less marked in women than in men. These data reinforce the need for specific studies to develop sex-specific recommendations for the management of ASCVD in women.
Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Masculino , Humanos , Femenino , Proproteína Convertasa 9/genética , LDL-Colesterol , Anticuerpos Monoclonales/efectos adversos , Hipolipemiantes , Aterosclerosis/diagnóstico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genéticaRESUMEN
In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).
Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adulto , Humanos , Cardiomiopatía Dilatada/metabolismo , Miocardio/metabolismo , Regulación hacia Abajo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , 5-Aminolevulinato Sintetasa/genética , Receptores Depuradores de Clase A/genéticaRESUMEN
Type 2 diabetes mellitus (T2DM) is a prevalent and complex metabolic disorder associated with various complications, including cardiovascular diseases. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1-RA) have emerged as novel therapeutic agents for T2DM, primarily aiming to reduce blood glucose levels. However, recent investigations have unveiled their multifaceted effects, extending beyond their glucose-lowering effect. SGLT2i operate by inhibiting the SGLT2 receptor in the kidneys, facilitating the excretion of glucose through urine, leading to reduced blood glucose levels, while GLP1-RA mimic the action of the GLP1 hormone, stimulating glucose-dependent insulin secretion from pancreatic islets. Both SGLT2i and GLP1-RA have shown remarkable benefits in reducing major cardiovascular events in patients with and without T2DM. This comprehensive review explores the expanding horizons of SGLT2i and GLP1-RA in improving cardiovascular health. It delves into the latest research, highlighting the effects of these drugs on heart physiology and metabolism. By elucidating their diverse mechanisms of action and emerging evidence, this review aims to recapitulate the potential of SGLT2i and GLP1-RA as therapeutic options for cardiovascular health beyond their traditional role in managing T2DM.
RESUMEN
Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR) emerged as a complementary and accurate detection method. When dealing with gene expression, the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion, our results show the suitability of the extraction-free quantification of circulating miRNAs as disease markers by direct dPCR.
RESUMEN
Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Válvula Aórtica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Calcio/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , FenotipoRESUMEN
Background: Aortic stenosis (AS) is the most common valve disorder characterized by fibro-calcific remodeling of leaflets. Recent evidence indicated that there is a sex-related difference in AS development and progression. Fibrotic remodeling is peculiar in women's aortic valves, while men's leaflets are more calcified. Our study aimed to assess aortic valve fibrosis (AVF) in a severe AS cohort using non-invasive diagnostic tools and determine whether sex-specific pathological pathways and cell types are associated with severe AS. Materials and Methods: We have included 28 men and 28 women matched for age with severe AS who underwent echocardiography and cardiac contrast-enhanced computed tomography (CT) before intervention. The calcium and fibrosis volumes were assessed and quantified using the ImageJ thresholding method, indexed calcium and fibrosis volume were calculated by dividing the volume by the aortic annular area. For a deeper understanding of molecular mechanisms characterizing AS disorder, differentially expressed genes and functional inferences between women and men's aortic valves were carried out on a publicly available microarray-based gene expression dataset (GSE102249). Cell types enrichment analysis in stenotic aortic valve tissues was used to reconstruct the sex-specific cellular composition of stenotic aortic valves. Results: In agreement with the literature, our CT quantifications showed that women had significantly lower aortic valve calcium content compared to men, while fibrotic tissue composition was significantly higher in women than men. The expression profiles of human stenotic aortic valves confirm sex-dependent processes. Pro-fibrotic processes were prevalent in women, while pro-inflammatory ones, linked to the immune response system, were enhanced in men. Cell-type enrichment analysis showed that mesenchymal cells were over-represented in AS valves of women, whereas signatures for monocytes, macrophages, T and B cells were enriched men ones. Conclusions: Our data provide the basis that the fibro-calcific process of the aortic valve is sex-specific, both at gene expression and cell type level. The quantification of aortic valve fibrosis by CT could make it possible to perform population-based studies and non-invasive assessment of novel therapies to reduce or halt sex-related calcific aortic valve stenosis (CAVS) progression, acting in an optimal window of opportunity early in the course of the disease.
Asunto(s)
Estenosis de la Válvula Aórtica , Fibromialgia , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis , Calcio/metabolismo , Femenino , Fibrosis , Humanos , MasculinoRESUMEN
Background: Cardiac amyloidosis (CA) has been recently recognized as a condition frequently associated with aortic stenosis (AS). The aim of this study was to evaluate: the main characteristics of patients with AS with and without CA, the impact of CA on patients with AS mortality, and the effect of different treatment strategies on outcomes of patients with AS with concomitant CA. Materials and Methods: A detailed search related to CA in patients with AS and outcomes was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seventeen studies enrolling 1,988 subjects (1,658 AS alone and 330 AS with CA) were included in the qualitative and quantitative analysis of main patients with AS characteristics with and without CA, difference in mortality, and treatment strategy. Results: The prevalence of CA resulted in a mean of 15.4% and it was even higher in patients with AS over 80 years old (18.2%). Patients with the dual diagnosis were more often males, had lower body mass index (BMI), were more prone to have low flow, low gradient with reduced left ventricular ejection fraction AS phenotype, had higher E/A and E/e', and greater interventricular septum hypertrophy. Lower Sokolow-Lyon index, higher QRS duration, higher prevalence of right bundle branch block, higher levels of N-terminal pro-brain natriuretic peptide, and high-sensitivity troponin T were significantly associated with CA in patients with AS. Higher overall mortality in the 178 patients with AS + CA in comparison to 1,220 patients with AS alone was observed [odds ratio (OR) 2.25, p = 0.004]. Meta-regression analysis showed that younger age and diabetes were associated with overall mortality in patients with CS with CA (Z-value -3.0, p = 0.003 and Z-value 2.5, p = 0.013, respectively). Finally, patients who underwent surgical aortic valve replacement (SAVR) or transcatheter aortic valve implantation (TAVI) had a similar overall mortality risk, but lower than medication-treated only patients. Conclusion: Results from our meta-analysis suggest that several specific clinical, electrocardiographic, and echocardiographic features can be considered "red flags" of CA in patients with AS. CA negatively affects the outcome of patients with AS. Patients with concomitant CA and AS benefit from SAVR or TAVI.
RESUMEN
Rationale-Calcific aortic valve stenosis (CAVS) is a pathological condition of the aortic valve with a prevalence of 3% in the general population. It is characterized by massive rearrangement of the extracellular matrix, mostly due to the accumulation of fibro-calcific deposits driven by valve interstitial cells (VIC), and no pharmacological treatment is currently available. The aim of this study was to evaluate the effects of P2Y2 receptor (P2RY2) activation on fibro-calcific remodeling of CAVS. Methods-We employed human primary VICs isolated from CAVS leaflets treated with 2-thiouridine-5'-triphosphate (2ThioUTP, 10 µM), an agonist of P2RY2. The calcification was induced by inorganic phosphate (2 mM) and ascorbic acid (50 µg/mL) for 7 or 14 days, while the 2ThioUTP was administered starting from the seventh day. 2ThioUTP was chronically administered for 5 days to evaluate myofibroblastic activation. Results-P2RY2 activation, under continuous or interrupted pro-calcific stimuli, led to a significant inhibition of VIC calcification potential (p < 0.01). Moreover, 2ThioUTP treatment was able to significantly reduce pro-fibrotic gene expression (p < 0.05), as well as that of protein α-smooth muscle actin (p = 0.004). Conclusions-Our data suggest that P2RY2 activation should be further investigated as a pharmacological target for the prevention of CAVS progression, acting on both calcification and myofibroblastic activation.
RESUMEN
Background: Current knowledge regarding the relationship between aortic valve sclerosis (AVSc), cardiovascular risk factors, and mortality in patients with known coronary artery disease (CAD) is still unclear. The present study aimed at investigating the prevalence of AVSc as well as its association with long-term all-cause mortality in high-risk CAD patients that has never been explored in large cohorts thus far. Methods and Results: In this retrospective and observational cohort study we enrolled high-risk CAD patients, hospitalized at Centro Cardiologico Monzino (CCM), Milan, Italy, between January 2006 and December 2016. The morphology and function of the aortic valve were assessed from the recorded echocardiographic images to evaluate the presence of AVSc, defined as a non-uniform thickening of the aortic leaflets with no consequences on hemodynamics. Data on 5-year all-cause mortality was retrieved from a Regional database. Of the 5,489 patients initially screened, 4,938 (mean age 67 ± 11 years, 3,954 [80%] men) were enrolled in the study. In the overall population, AVSc was detected in 2,138 (43%) patients. Multivariable LASSO regression revealed that age, female gender, diabetes mellitus, previous MI, and left ventricular ejection fraction were independently associated with AVSc. All-cause mortality (adjusted hazard ratio: 1.29, 95%CI: 1.05-1.58) was significantly higher in AVSc than in non-AVSc patients. Conclusions: AVSc is frequently detected in high-risk CAD patients and is associated with long-term mortality. Our findings corroborate the hypothesis that AVSc is an underestimated marker of systemic cardiovascular risk. Thus, AVSc detection may be used to improve long-term risk stratification of high-risk CAD patients.
RESUMEN
Diabetes mellitus (DM) is one of the most common and costly disorders that affect humans around the world. Recently, clinicians and scientists have focused their studies on the effects of glycemic variability (GV), which is especially associated with cardiovascular diseases. In healthy subjects, glycemia is a very stable parameter, while in poorly controlled DM patients, it oscillates greatly throughout the day and between days. Clinically, GV could be measured by different parameters, but there are no guidelines on standardized assessment. Nonetheless, DM patients with high GV experience worse cardiovascular disease outcomes. In vitro and in vivo studies showed that high GV causes several detrimental effects, such as increased oxidative stress, inflammation, and apoptosis linked to endothelial dysfunction. However, the evidence that treating GV is beneficial is still scanty. Clinical trials aiming to improve the diagnostic and prognostic accuracy of GV measurements correlated with cardiovascular outcomes are needed. The present review aims to evaluate the clinical link between high GV and cardiovascular diseases, taking into account the underlined biological mechanisms. A clear view of this challenge may be useful to standardize the clinical evaluation and to better identify treatments and strategies to counteract this DM aspect.
Asunto(s)
Enfermedades Cardiovasculares/etiología , Complicaciones de la Diabetes/complicaciones , Hiperglucemia/complicaciones , Animales , Glucemia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Hiperglucemia/metabolismo , Estrés OxidativoRESUMEN
Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.
Asunto(s)
Secuenciación de Nanoporos , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Sistemas de Lectura Abierta/genética , RNA-SeqRESUMEN
Background: A strong association between aortic valve sclerosis (AVSc), the earliest manifestation of calcific aortic valve disease, and atherosclerosis exists. The aim of the study was to evaluate the predictive capabilities of AVSc on long-term all-cause mortality, in patients requiring carotid endarterectomy (CEA). Methods and Results: 806 consecutive CEA patients were enrolled. Preoperative echocardiography was used to assess AVSc. Computed tomography angiography was applied for plaque characterization. Kaplan-Meier curves, Cox linear regression, and area under the receiving operator characteristic (AUC) curve analyses were used to evaluate the predictive capability of AVSc. Overall, 348 of 541 patients had AVSc (64%). Age, diabetes, and estimated glomerular filtration rate (eGFR) were associated with AVSc. In the 5-year follow-up, AVSc group had a mortality rate of 16.7% while in no-AVSc group was 7.8%. Independent predictors of all-cause mortality were age, sex, eGFR, left ventricular ejection fraction, and AVSc. After adjustments, AVSc was associated with a significant increase in all-cause mortality risk (hazard ratio, HR = 1.9; 95%CI: 1.04-3.54; p = 0.038). We stratify our cohort based on carotid atheromatous plaque-type: soft, calcified, and mixed-fibrotic. In patients with mixed-fibrotic plaques, the mortality rate of AVSc patients was 15.5% compared to 2.4% in no-AVSc patients. In this group, AVSc was associated with an increased long-term all-cause mortality risk with an adjusted HR of 12.8 (95%CI: 1.71-96.35; p = 0.013), and the AUC, combing eGFR and AVSc was 0.77 (p < 0.001). Conclusions: Our findings indicate that AVSc together with eGFR may be used to improve long-term risk stratification of patients undergoing CEA surgery.
RESUMEN
Patients requiring diagnostic testing for coronavirus disease 2019 (COVID-19) are routinely assessed by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) amplification of Sars-CoV-2 virus RNA extracted from oro/nasopharyngeal swabs. Despite the good specificity of the assays certified for SARS-CoV-2 molecular detection, and a theoretical sensitivity of few viral gene copies per reaction, a relatively high rate of false negatives continues to be reported. This is an important challenge in the management of patients on hospital admission and for correct monitoring of the infectivity after the acute phase. In the present report, we show that the use of digital PCR, a high sensitivity method to detect low amplicon numbers, allowed us to correctly detecting infection in swab material in a significant number of false negatives. We show that the implementation of digital PCR methods in the diagnostic assessment of COVID-19 could resolve, at least in part, this timely issue.
Asunto(s)
COVID-19/diagnóstico , Reacciones Falso Negativas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/patogenicidad , Adulto , Anciano , COVID-19/diagnóstico por imagen , COVID-19/genética , Pruebas Diagnósticas de Rutina/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos XRESUMEN
The most typical feature of atherogenesis in humans at its early stage is the formation of foam cells in subendothelial arterial intima, which occurs as the consequence of intracellular cholesterol deposition. The main source of lipids accumulating in the arterial wall is circulating low-density lipoprotein (LDL). However, LDL particles should undergo proatherogenic modification to acquire atherogenic properties. One of the known types of atherogenic modification of LDL is enzymatic deglycosilation, namely, desialylation, which is the earliest change in the cascade of following multiple LDL modifications. The accumulating data make sialidases an intriguing and plausible therapeutic target, since pharmacological modulation of activity of these enzymes may have beneficial effects in several pathologies, including atherosclerosis. The hypothesis exists that decreasing LDL enzymatic desialylation may result in the prevention of lipid accumulation in arterial wall, thus breaking down one of the key players in atherogenesis at the cellular level. Several drugs acting as glycomimetics and inhibiting sialidase enzymatic activity already exist, but the concept of sialidase inhibition as an anti-atherosclerosis strategy remains unexplored to date. This review is focused on the potential possibilities of the repurposing of sialidase inhibitors for pathogenetic anti-atherosclerotic therapy.
Asunto(s)
Aterosclerosis , Neuraminidasa , Aterosclerosis/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Humanos , Lipoproteínas LDLRESUMEN
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.