Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evolution ; 77(12): 2656-2671, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37801637

RESUMEN

The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern.


Asunto(s)
Golondrinas , Animales , Golondrinas/genética , Ecosistema , Evolución Biológica , Australia , Filogenia , Flujo Génico
2.
J Hered ; 114(6): 625-636, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455658

RESUMEN

Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen's hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen's × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen's, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen's hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen's hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.


Asunto(s)
Evolución Biológica , Aves , Animales , Aves/genética
3.
Ecol Evol ; 11(4): 1850-1865, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33614008

RESUMEN

Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island-mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island-mainland relationships, may lead to inconsistent results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...