Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Appl Spectrosc ; : 37028241238782, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38571340

RESUMEN

Many optical applications, including free-space optical communications, lidar, and astronomical measurements, are impacted by the presence of light-scattering particles also known as obscurants. Scattering from particles consisting of sand, dust, dirt, and other substances can significantly degrade optical signals. For many obscurants, the index of refraction is dependent on the wavelength of light, and there exists a Christiansen wavelength (λc) at which scattering is at a minimum. At λc the index of refraction of the scattering particles (ns) matches that of the surrounding medium, in this case air (with refractive index na). This condition makes the scattering particulates almost invisible to the propagating light, minimizing scattering and increasing transmission at λc. Previously, the authors showed a technique for measuring the index of refraction n(λ) and the extinction coefficient k(λ) using spectroscopic ellipsometry for various sand samples. Spectroscopic measurements on static sand samples demonstrated good agreement with the predicted spectral properties and highlighted the presence of a Christiansen feature near 8 µm. However, in outdoor environments, the scattering particles are never stationary but in a constant state of motion. In this work, spectroscopic measurements on dynamic sand samples (sand that is falling through the optical beam path) show two Christiansen features seen previously in predicted and observed static sand measurements. Additionally, we characterize, for the first time, transmission around a Christiansen feature using a tunable laser and show results consistent with other spectroscopic measurements.

2.
Genes (Basel) ; 15(3)2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540357

RESUMEN

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón , Animales , Humanos , Ratones , Pulmón/metabolismo , Mamíferos/genética , Pericitos , Fenotipo , Transcriptoma/genética , Recién Nacido
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442187

RESUMEN

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Asunto(s)
Pulmón , Transcriptoma , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Recién Nacido , Lactante , Niño , Preescolar , Masculino , Femenino , Análisis de Secuencia de ARN/métodos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
4.
Appl Spectrosc ; 78(4): 403-411, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385358

RESUMEN

In order to model the propagation of light through a sand cloud, it is critical to have accurate data for the optical constants of the sand particles that comprise it. The same holds true for modeling propagation through particles of any type suspended in a medium. Few methods exist, however, to measure these quantities with high accuracy. In this paper, a characterization method based on spectroscopic ellipsometry (SE) that can be applied to a particulate material is presented. In this method, a polished disc of an adhesive compound is prepared, and its optical constants are measured. Next, a mixture of the adhesive and a sand sample is prepared and processed into a polished disc, and SE is performed. By treating the mixture as a Bruggeman effective medium, the optical constants of the particulate material are extracted. For verification of the proposed method, it is first applied to pure silica powder, demonstrating good agreement between measured optical constants and literature values. It is then applied to Arizona road dust, a standard reference material, as well as real desert sand samples. The resulting optical constant data is input into a rigorous scattering model to predict extinction coefficients for various types of sand. Modeling results are compared to spectroscopic measurements on static sand samples, demonstrating good agreement between predicted and measured spectral properties including the presence of a Christiansen feature near a wavelength of 8 µm.

5.
J Neurol Neurosurg Psychiatry ; 95(4): 316-324, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37827570

RESUMEN

BACKGROUND: Cognitive and behavioural dysfunction may occur in people with motor neuron disease (MND), with some studies suggesting an association with the C9ORF72 repeat expansion. Their onset and progression, however, is poorly understood. We explored how cognition and behaviour change over time, and whether demographic, clinical and genetic factors impact these changes. METHODS: Participants with MND were recruited through the Phenotype-Genotype-Biomarker study. Every 3-6 months, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was used to assess amyotrophic lateral sclerosis (ALS) specific (executive functioning, verbal fluency, language) and ALS non-specific (memory, visuospatial) functions. Informants reported on behaviour symptoms via semi-structured interview. RESULTS: Participants with neuropsychological data at ≥3 visits were included (n=237, mean age=59, 60% male), of which 18 (8%) were C9ORF72 positive. Baseline cognitive impairment was apparent in 18 (8%), typically in ALS specific domains, and associated with lower education, but not C9ORF72 status. Cognition, on average, remained stable over time, with two exceptions: (1) C9ORF72 carriers declined in all ECAS domains, (2) 8%-9% of participants with baseline cognitive impairment further declined, primarily in the ALS non-specific domain, which was associated with less education. Behavioural symptoms were uncommon. CONCLUSIONS: In this study, cognitive dysfunction was less common than previously reported and remained stable over time for most. However, cognition declines longitudinally in a small subset, which is not entirely related to C9ORF72 status. Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Enfermedad de la Neurona Motora , Humanos , Masculino , Persona de Mediana Edad , Femenino , Esclerosis Amiotrófica Lateral/diagnóstico , Proteína C9orf72/genética , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Cognición/fisiología , Pruebas Neuropsicológicas
6.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557923

RESUMEN

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas , Animales , Hipocampo , Compuestos de Fenilurea/química , Isoxazoles/farmacología , Isoxazoles/química , Regulación Alostérica
7.
Neurol Genet ; 9(4): e200077, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37346932

RESUMEN

Background and Objectives: Amyotrophic lateral sclerosis (ALS) is a degenerative condition of the brain and spinal cord in which protein-coding variants in known ALS disease genes explain a minority of sporadic cases. There is a growing interest in the role of noncoding structural variants (SVs) as ALS risk variants or genetic modifiers of ALS phenotype. In small European samples, specific short SV alleles in noncoding regulatory regions of SCAF4, SQSTM1, and STMN2 have been reported to be associated with ALS, and several groups have investigated the possible role of SMN1/SMN2 gene copy numbers in ALS susceptibility and clinical severity. Methods: Using short-read whole genome sequencing (WGS) data, we investigated putative ALS-susceptibility SCAF4 (3'UTR poly-T repeat), SQSTM1 (intron 5 AAAC insertion), and STMN2 (intron 3 CA repeat) alleles in African ancestry patients with ALS and described the architecture of the SMN1/SMN2 gene region. South African cases with ALS (n = 114) were compared with ancestry-matched controls (n = 150), 1000 Genomes Project samples (n = 2,336), and H3Africa Genotyping Chip Project samples (n = 347). Results: There was no association with previously reported SCAF4 poly-T repeat, SQSTM1 AAAC insertion, and long STMN2 CA alleles with ALS risk in South Africans (p > 0.2). Similarly, SMN1 and SMN2 gene copy numbers did not differ between South Africans with ALS and matched population controls (p > 0.9). Notably, 20% of the African samples in this study had no SMN2 gene copies, which is a higher frequency than that reported in Europeans (approximately 7%). Discussion: We did not replicate the reported association of SCAF4, SQSTM1, and STMN2 short SVs with ALS in a small South African sample. In addition, we found no link between SMN1 and SMN2 copy numbers and susceptibility to ALS in this South African sample, which is similar to the conclusion of a recent meta-analysis of European studies. However, the SMN gene region findings in Africans replicate previous results from East and West Africa and highlight the importance of including diverse population groups in disease gene discovery efforts. The clinically relevant differences in the SMN gene architecture between African and non-African populations may affect the effectiveness of targeted SMN2 gene therapy for related diseases such as spinal muscular atrophy.

8.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37066307

RESUMEN

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

9.
Toxicol Sci ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847456

RESUMEN

Developmental exposures can influence life-long health; yet, counteracting negative consequences is challenging due to poor understanding of cellular mechanisms. The aryl hydrocarbon receptor (AHR) binds many small molecules, including numerous pollutants. Developmental exposure to the signature environmental AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly dampens adaptive immune responses to influenza A virus (IAV) in adult offspring. CD8+ cytotoxic T lymphocytes (CTL) are crucial for successful infection resolution, which depends on the number generated and the complexity of their functionality. Prior studies showed developmental AHR activation significantly reduced the number of virus-specific CD8+ T cells, but impact on their functions is less clear. Other studies showed developmental exposure was associated with differences in DNA methylation in CD8+ T cells. Yet, empirical evidence that differences in DNA methylation are causally related to altered CD8+ T cell function is lacking. The two objectives were to ascertain whether developmental AHR activation affects CTL function, and whether differences in methylation contribute to reduced CD8+ T cell responses to infection. Developmental AHR triggering significantly reduced CTL polyfunctionality, and modified the transcriptional program of CD8+ T cells. S-adenosylmethionine (SAM), which increases DNA methylation, but not Zebularine, which diminishes DNA methylation, restored polyfunctionality and boosted the number of virus-specific CD8+ T cells. These findings suggest that diminished methylation, initiated by developmental exposure to an AHR-binding chemical, contributes to durable changes in antiviral CD8+ CTL functions later in life. Thus, deleterious consequence of development exposure to environmental chemicals are not permanently fixed, opening the door for interventional strategies to improve health.

10.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652336

RESUMEN

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Asunto(s)
Antineoplásicos , Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Niño , Humanos , Antineoplásicos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Azepinas/uso terapéutico , Pirimidinas/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Aurora Quinasa A , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos
11.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
12.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176137

RESUMEN

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Niño , Aberraciones Cromosómicas , Exones , Genómica , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Recurrencia
13.
Neurol Genet ; 8(1): e654, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35047667

RESUMEN

BACKGROUND AND OBJECTIVES: To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. METHODS: One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. RESULTS: Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. DISCUSSION: Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.

14.
J Adv Pract Oncol ; 12(7): 705-714, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34671500

RESUMEN

PURPOSE: The objective of this study is to describe characteristics and short- and long-term outcomes of patients with hematologic malignancies who received cardiopulmonary resuscitation (CPR). METHODS: A retrospective review was conducted of all Code Blues at a large comprehensive cancer center. Demographic, clinical, and outcome variables were analyzed for patients with a hematologic malignancy who underwent CPR. RESULTS: Of 258 patients, 60.1% had leukemia. Outcomes included return of spontaneous circulation (70.2%), hospital survival (12%), and 90-day, 6-month, and 1-year survival rates of 9.8%, 8.2%, and 5.9%, respectively. Factors associated with hospital mortality included establishing a do not resuscitate order after CPR (p < .0001), location of CPR (p = .0004), cause of arrest (p = .0019), requiring vasopressors (p = .0130), mechanical ventilation (p = .0423), and acute renal failure post CPR (p = .0006). Although no difference in hospital survival between leukemia and non-leukemia patients was found, more non-leukemia patients were alive at 90 days (p = .0099), 6 months (p = .0023), and 1 year (p = .0119). CONCLUSIONS: Factors including organ dysfunction, location of CPR, and cause of arrest are associated with hospital mortality post CPR. However, immediate survival post CPR does not seem to be affected by a diagnosis of leukemia. These data should assist health care providers with discussions regarding advance care planning and goals of care after cardiac arrest.

15.
Nat Commun ; 12(1): 4155, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230480

RESUMEN

The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Pericardio/citología , Pericardio/metabolismo , Animales , Quimiocinas , Vasos Coronarios/metabolismo , Embrión de Mamíferos , Transición Epitelial-Mesenquimal , Expresión Génica , Corazón , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Proteínas Nucleares , Pericardio/embriología , Factor de Respuesta Sérica , Transducción de Señal , Transactivadores , Factores de Transcripción/metabolismo , Transcriptoma
16.
IBRO Neurosci Rep ; 10: 130-135, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34179866

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized primarily by progressive loss of motor neurons. Although ALS occurs worldwide and the frequency and spectrum of identifiable genetic causes of disease varies across populations, very few studies have included African subjects. In addition to a hexanucleotide repeat expansion (RE) in C9orf72, the most common genetic cause of ALS in Europeans, REs in ATXN2, NIPA1 and ATXN1 have shown variable associations with ALS in Europeans. Intermediate range expansions in some of these genes (e.g. ATXN2) have been reported as potential risk factors, or phenotypic modifiers, of ALS. Pathogenic expansions in NOP56 cause spinocerebellar ataxia-36, which can present with prominent motor neuron degeneration. Here we compare REs in these genes in a cohort of Africans with ALS and population controls using whole genome sequencing data. Targeting genotyping of short tandem repeats at known loci within ATXN2, NIPA1, ATXN1 and NOP56 was performed using ExpansionHunter software in 105 Southern African (SA) patients with ALS. African population controls were from an in-house SA population control database (n = 25), the SA Human Genome Program (n = 24), the Simons Genome Diversity Project (n = 39) and the Illumina Polaris Diversity Cohort (IPDC) dataset (n = 50). We found intermediate RE alleles in ATXN2 (27-33 repeats) and ATXN1 (33-35 repeats), and NIPA1 long alleles (≥8 repeats) were rare in Africans, and not associated with ALS (p > 0.17). NOP56 showed no expanded alleles in either ALS or controls. We also compared the differences in allele distributions between the African and n = 50 European controls (from the IPDC). There was a statistical significant difference in the distribution of the REs in the ATXN1 between African and European controls (Chi-test p < 0.001), and NIPA1 showed proportionately more longer alleles (RE > 8) in Europeans vs. Africans (Fisher's p = 0.016). The distribution of RE alleles in ATXN2 and NOP56 were similar amongst African and European controls. In conclusion, repeat expansions in ATXN2, NIPA1 and ATXN1, which showed associations with ALS in Europeans, were not replicated in Southern Africans with ALS.

17.
J Exp Med ; 218(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857288

RESUMEN

Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Inflamación/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Estrés Fisiológico/fisiología , Transactivadores/metabolismo , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Homeostasis/fisiología , Inmunidad Innata/fisiología , Ratones , Ratones Endogámicos C57BL
18.
Nanotechnology ; 32(32)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33906169

RESUMEN

Black arsenic phosphorus single crystals were grown using a short-way transport technique resulting in crystals up to 12 × 110µmand ranging from 200 nm to 2µmthick. The reaction conditions require tin, tin (IV) iodide, gray arsenic, and red phosphorus placed in an evacuated quartz ampule and ramped up to a maximum temperature of 630 °C. The crystal structure and elemental composition were characterized using Raman spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, cross-sectional transmission microscopy, and electron backscatter diffraction. The data provides valuable insight into the growth mechanism. A previously developed b-P thin film growth technique can be adapted to b-AsP film growth with slight modifications to the reaction duration and reactant mass ratios. Devices fabricated from exfoliated bulk-b-AsP grown in the same reaction condition as the thin film growth process are characterized, showing an on-off current ratio of 102, a threshold voltage of -60 V, and a peak field-effect hole mobility of 23 cm2V-1s-1atVd= -0.9 V andVg= -60 V.

19.
Environ Health Perspect ; 129(1): 17007, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449811

RESUMEN

BACKGROUND: Early life environmental exposures can have lasting effects on the function of the immune system and contribute to disease later in life. Epidemiological studies have linked early life exposure to xenobiotics that bind the aryl hydrocarbon receptor (AhR) with dysregulated immune responses later in life. Among the immune cells influenced by developmental activation of the AhR are CD4+ T cells. Yet, the underlying affected cellular pathways via which activating the AhR early in life causes the responses of CD4+ T cells to remain affected into adulthood remain unclear. OBJECTIVE: Our goal was to identify cellular mechanisms that drive impaired CD4+ T-cell responses later in life following maternal exposure to an exogenous AhR ligand. METHODS: C57BL/6 mice were vertically exposed to the prototype AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), throughout gestation and early postnatal life. The transcriptome and DNA methylation patterns were evaluated in CD4+ T cells isolated from naïve and influenza A virus (IAV)-infected adult mice that were developmentally exposed to TCDD or vehicle control. We then assessed the influence of DNA methylation-altering drug therapies on the response of CD4+ T cells from developmentally exposed mice to infection. RESULTS: Gene and protein expression showed that developmental AhR activation reduced CD4+ T-cell expansion and effector functions during IAV infection later in life. Furthermore, whole-genome bisulfite sequencing analyses revealed that developmental AhR activation durably programed DNA methylation patterns across the CD4+ T-cell genome. Treatment of developmentally exposed offspring with DNA methylation-altering drugs alleviated some, but not all, of the impaired CD4+ T-cell responses. DISCUSSION: Taken together, these results indicate that skewed DNA methylation is one of the mechanisms by which early life exposures can durably change the function of T cells in mice. Furthermore, treatment with DNA methylation-altering drugs after the exposure restored some aspects of CD4+ T-cell functional responsiveness. https://doi.org/10.1289/EHP7699.


Asunto(s)
Linfocitos T CD4-Positivos , Metilación de ADN , Exposición a Riesgos Ambientales , Infecciones por Orthomyxoviridae , Dibenzodioxinas Policloradas , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Metilación de ADN/efectos de los fármacos , Femenino , Virus de la Influenza A/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Dibenzodioxinas Policloradas/toxicidad , Embarazo , Receptores de Hidrocarburo de Aril/inmunología , Receptores de Hidrocarburo de Aril/metabolismo
20.
J Biomol Tech ; 32(4)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35837267

RESUMEN

Single-cell RNA sequencing (scRNA-seq) offers great new opportunities for increasing our understanding of complex biological processes. In particular, development of an accurate Human Cell Atlas is largely dependent on the rapidly advancing technologies and molecular chemistries employed in scRNA-seq. These advances have already allowed an increase in throughput for scRNA-seq from 96 to 80,000 cells on a single instrument run by capturing cells within nanoliter droplets. Although this increase in throughput is critical for many experimental questions, a thorough comparison between microfluidic-based, plate-based, and droplet-based technologies or between multiple available platforms utilizing these technologies is largely lacking. Here, we report scRNA-seq data from SUM149PT cells treated with the histone deacetylase inhibitor trichostatin A versus untreated controls across several scRNA-seq platforms (Fluidigm C1, WaferGen iCell8, 10x Genomics Chromium Controller, and Illumina/BioRad ddSEQ). The primary goal of this project was to demonstrate RNA sequencing methods for profiling the ultra-low amounts of RNA present in individual cells, and this report discusses the results of the study, as well as technical challenges and lessons learned and present general guidelines for best practices in sample preparation and analysis.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA