Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38973531

RESUMEN

Several studies comparing primate locomotion under lab versus field conditions have shown the importance of implementing both types of studies, as each has their advantages and disadvantages. However, three-dimensional (3D) motion capture of primates has been challenging under natural conditions. In this study, we provide a detailed protocol on how to collect 3D biomechanical data on primate leaping in their natural habitat that can be widely implemented. To record primate locomotion in the dense forest we use modified GoPro Hero Black cameras with zoom lenses that can easily be carried around and set up on tripods. We outline details on how to obtain camera calibrations at greater heights and how to process the collected data using the MATLAB camera calibration app and the motion tracking software DLTdv8a. We further developed a new MATLAB application "WildLeap3D" to generate biomechanical performance metrics from the derived x, y, z coordinates of the leaps. We provide details on how to collect data on support diameter, compliance, and orientation, and combine these with the jumps to study locomotor performance in an ecological context. We successfully reconstructed leaps of wild primates in the 3D space under natural conditions and provided data on four representative leaps. We provide exemplar data on primate velocity and acceleration during a leap and show how our protocol can be used to analyze segmental kinematics. This study will help to make motion capture of freely moving animals more accessible and help further our knowledge about animal locomotion and movement.

2.
Am J Biol Anthropol ; 184(2): e24914, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38515235

RESUMEN

OBJECTIVES: Despite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance. MATERIALS AND METHODS: We recorded wild colobine monkeys crossing gaps in the canopy and quantitatively tracked the kinematics of both the monkey and the compliant support during behavioral sequences. We also empirically measured the compliance of a sample of locomotor supports in the monkeys' natural habitat, allowing us to quantify the resonant properties of substrates used during leaping. RESULTS: Analyses of three recordings show that adult red colobus monkeys (Piliocolobus tephrosceles) use branch compliance to their advantage by actively pumping branches before leaping, augmenting their vertical velocity at take-off. Quantitative modeling of branch resonance periods, based on empirical measurements of support compliance, suggests that monkeys specifically employed branch pumping on relatively thin branches with protracted periods of oscillation. Finally, an additional four recordings show that both red colobus and black and white colobus monkeys (Colobus guereza) utilize tree swaying to cross large gaps, augmenting horizontal velocity at take-off. DISCUSSION: This deliberate branch manipulation to produce a mechanical effect for stronger propulsion is consistent with the framework of instrumental problem-solving. To our knowledge, this is the first study of wild primates which quantitatively shows how compliant branches can be used advantageously to augment locomotor performance.


Asunto(s)
Árboles , Animales , Fenómenos Biomecánicos/fisiología , Masculino , Femenino , Árboles/fisiología , Locomoción/fisiología , Colobus/fisiología
3.
Am J Biol Anthropol ; 184(3): e24917, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38411385

RESUMEN

OBJECTIVES: An accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences. MATERIALS AND METHODS: Using high-speed cameras, we recorded the quadrupedal locomotion of four wild lemur species-Eulemur rubriventer, Eulemur rufifrons, Hapalemur aureus, and Lemur catta (N = 113 total strides). We quantified the height, diameter, and angular orientation of locomotor supports using remote sensors and tested the influence of support parameters on gait kinematics, specifically predicting that in response to increasing substrate height, lemurs would decrease speed and stride frequency, but increase stride length and the mean number of supporting limbs. RESULTS: Lemurs did not adjust stride frequency on substrates of varying height. Adjustments to speed, stride length, and the mean number of supporting limbs in response to varying height often ran counter to predictions. Only E. rubriventer decreased speed and increased the mean number of supporting limbs on higher substrates. DISCUSSION: Results suggest that quadrupedal walking is a relatively safe form of locomotion for lemurs, requiring subtle changes in gait to increase stability on higher-that is, potentially riskier-substrates. Continued investigation of the impact of height on locomotion will be important to determine how animals assess risk in their environment and how they choose to use this information to move more safely.


Asunto(s)
Lemur , Locomoción , Animales , Fenómenos Biomecánicos , Locomoción/fisiología , Lemur/fisiología , Masculino , Femenino , Marcha/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...