RESUMEN
In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.
Asunto(s)
Cromatina , Epigénesis Genética , Genotipo , Mutación , Análisis de la Célula Individual , Animales , Femenino , Humanos , Masculino , Ratones , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipaje , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Inflamación/genética , Inflamación/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Megacariocitos/patología , Proteínas de la Membrana/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , ARN/genética , Células Clonales/metabolismoRESUMEN
Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.
Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Transducción de SeñalRESUMEN
Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.
Asunto(s)
Inestabilidad Cromosómica , Segregación Cromosómica , Cromosomas , Epigénesis Genética , Micronúcleos con Defecto Cromosómico , Neoplasias , Animales , Humanos , Ratones , Cromatina/genética , Inestabilidad Cromosómica/genética , Cromosomas/genética , Cromosomas/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Mitosis , Variaciones en el Número de Copia de ADN , Procesamiento Proteico-PostraduccionalRESUMEN
Somatic mutations in cancer genes have been detected in clonal expansions across healthy human tissue, including in clonal hematopoiesis. However, because mutated and wild-type cells are admixed, we have limited ability to link genotypes with phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, capturing genotype, transcriptomes and methylomes in progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations result in myeloid over lymphoid bias, and an expansion of immature myeloid progenitors primed toward megakaryocytic-erythroid fate, with dysregulated expression of lineage and leukemia stem cell markers. Mutated DNMT3A leads to preferential hypomethylation of polycomb repressive complex 2 targets and a specific CpG flanking motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic link between DNMT3A mutations and aberrant transcriptional phenotypes. Thus, single-cell multi-omics paves the road to defining the downstream consequences of mutations that drive clonal mosaicism.
Asunto(s)
Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilasas de Modificación del ADN/genética , Hematopoyesis/genética , Humanos , Mutación , Complejo Represivo Polycomb 2/genéticaRESUMEN
To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
Asunto(s)
Biocatálisis , Histonas/metabolismo , Oncogenes , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Línea Celular , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilasas/metabolismo , Humanos , Cinética , Metilación , Modelos Biológicos , ARN Polimerasa II/metabolismoRESUMEN
Defining the transcriptomic identity of malignant cells is challenging in the absence of surface markers that distinguish cancer clones from one another, or from admixed non-neoplastic cells. To address this challenge, here we developed Genotyping of Transcriptomes (GoT), a method to integrate genotyping with high-throughput droplet-based single-cell RNA sequencing. We apply GoT to profile 38,290 CD34+ cells from patients with CALR-mutated myeloproliferative neoplasms to study how somatic mutations corrupt the complex process of human haematopoiesis. High-resolution mapping of malignant versus normal haematopoietic progenitors revealed an increasing fitness advantage with myeloid differentiation of cells with mutated CALR. We identified the unfolded protein response as a predominant outcome of CALR mutations, with a considerable dependency on cell identity, as well as upregulation of the NF-κB pathway specifically in uncommitted stem cells. We further extended the GoT toolkit to genotype multiple targets and loci that are distant from transcript ends. Together, these findings reveal that the transcriptional output of somatic mutations in myeloproliferative neoplasms is dependent on the native cell identity.