RESUMEN
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antígenos CD79 , Linfoma de Células B Grandes Difuso , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Antígenos CD79/genética , Antígenos CD79/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Línea Celular Tumoral , Proteínas PortadorasRESUMEN
Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.
Asunto(s)
Linfoma Folicular , Linfoma de Células B Grandes Difuso , Humanos , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Pronóstico , Inmunosupresores , Microambiente TumoralRESUMEN
Chimeric antigen receptor (CAR) T-cell therapy has had considerable success in the treatment of B-cell malignancies. Targeting the B-lineage marker CD19 has brought great advances to the treatment of acute lymphoblastic leukemia and B-cell lymphomas. However, relapse remains an issue in many cases. Such relapse can result from downregulation or loss of CD19 from the malignant cell population or expression of alternate isoforms. Consequently, there remains a need to target alternative B-cell antigens and diversify the spectrum of epitopes targeted within the same antigen. CD22 has been identified as a substitute target in cases of CD19-negative relapse. One anti-CD22 antibody-clone m971-targets a membrane-proximal epitope of CD22 and has been widely validated and used in the clinic. Here, we have compared m971-CAR with a novel CAR derived from IS7, an antibody that targets a central epitope on CD22. The IS7-CAR has superior avidity and is active and specific against CD22-positive targets, including B-acute lymphoblastic leukemia patient-derived xenograft samples. Side-by-side comparisons indicated that while IS7-CAR killed less rapidly than m971-CAR in vitro, it remains efficient in controlling lymphoma xenograft models in vivo. Thus, IS7-CAR presents a potential alternative candidate for the treatment of refractory B-cell malignancies.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Humanos , Antígenos CD19 , Epítopos , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , RecurrenciaRESUMEN
The BCR consists of surface-bound Ig and a heterodimeric signaling unit comprised of CD79A and CD79B. Upon cognate Ag recognition, the receptor initiates important signals for B cell development and function. The receptor also conveys Ag-independent survival signals termed tonic signaling. Although the requirement of a CD79A/CD79B heterodimer for BCR complex assembly and surface expression is well established based on mice models, few studies have investigated this in human mature B cells. In this study, we found that human tonsillar B cells with high surface expression of IgM or IgG had potentiated BCR signaling compared with BCRlow cells, and high IgM expression in germinal center B cells was associated with reduced apoptosis. We explored the mechanism for IgM surface expression by CRISPR/Cas9-induced deletion of CD79A or CD79B in four B lymphoma cell lines. Deletion of either CD79 protein caused loss of surface IgM in all cell lines and reduced fitness in three. From two cell lines, we generated stable CD79A or CD79B knockout clones and demonstrated that loss of CD79A or CD79B caused a block in N-glycan maturation and accumulation of immature proteins, compatible with retention of BCR components in the endoplasmic reticulum. Rescue experiments with CD79B wild-type restored surface expression of CD79A and IgM with mature glycosylation, whereas a naturally occurring CD79B G137S mutant disrupting CD79A/CD79B heterodimerization did not. Our study highlights that CD79A and CD79B are required for surface IgM expression in human B cells and illuminates the importance of the IgM expression level for signaling and fitness.
Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Humanos , Animales , Ratones , Receptores de Antígenos de Linfocitos B/genética , Recuento de Células , Centro Germinal , Inmunoglobulina M , Antígenos CD79/genéticaRESUMEN
Sentinel lymph nodes are the first nodes draining the lymph from a breast and could reveal early changes in the host immune system upon dissemination of breast cancer cells. To investigate this, we performed single-cell immune profiling of lymph nodes with and without metastatic cells. Whereas no significant changes were observed for B-cell and natural killer (NK)-cell subsets, metastatic lymph nodes had a significantly increased frequency of CD8 T cells and a skewing toward an effector/memory phenotype of CD4 and CD8 T cells, suggesting an ongoing immune response. Additionally, metastatic lymph nodes had an increased frequency of TIGIT (T-cell immunoreceptor with Ig and ITIM domains)-positive T cells with suppressed TCR signaling compared with non-metastatic nodes, indicating exhaustion of effector T cells, and an increased frequency of regulatory T cells (Tregs) with an activated phenotype. T-cell alterations correlated with the percentage of metastatic tumor cells, reflecting the presence of metastatic tumor cells driving T effector cells toward exhaustion and promoting immunosuppression by recruitment or increased differentiation toward Tregs. These results show that immune suppression occurs already in early stages of tumor progression.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos , Femenino , Humanos , Terapia de Inmunosupresión , Ganglios Linfáticos/patología , Melanoma , Neoplasias Cutáneas , Subgrupos de Linfocitos T/patología , Melanoma Cutáneo MalignoRESUMEN
Biological heterogeneity in diffuse large B cell lymphoma (DLBCL) is partly driven by cell-of-origin subtypes and associated genomic lesions, but also by diverse cell types and cell states in the tumor microenvironment (TME). However, dissecting these cell states and their clinical relevance at scale remains challenging. Here, we implemented EcoTyper, a machine-learning framework integrating transcriptome deconvolution and single-cell RNA sequencing, to characterize clinically relevant DLBCL cell states and ecosystems. Using this approach, we identified five cell states of malignant B cells that vary in prognostic associations and differentiation status. We also identified striking variation in cell states for 12 other lineages comprising the TME and forming cell state interactions in stereotyped ecosystems. While cell-of-origin subtypes have distinct TME composition, DLBCL ecosystems capture clinical heterogeneity within existing subtypes and extend beyond cell-of-origin and genotypic classes. These results resolve the DLBCL microenvironment at systems-level resolution and identify opportunities for therapeutic targeting (https://ecotyper.stanford.edu/lymphoma).
Asunto(s)
Ecosistema , Linfoma de Células B Grandes Difuso/genética , Microambiente Tumoral/genética , Humanos , PronósticoRESUMEN
The role of fusion genes and cancer driver genes in malignant transformation has traditionally been explored using transgenic or chimeric mouse models. It has been challenging to develop models that fully resemble the characteristics and morphology of human cancers. This applies to anaplastic large-cell lymphoma (ALCL), a malignancy classified as a peripheral T-cell lymphoma. It is still unclear at which stage of T-cell development ALCL can occur, as well as the early molecular events required for malignant transformation. In this issue of Cancer Research, Pawlicki and colleagues introduced the NPM-ALK fusion gene and mutant variants into primary T cells from healthy donors. By monitoring transduced T-cell clones over time, they demonstrated that transformed T cells undergo a progressive loss of T-cell identity accompanied with upregulation of epithelial-to-mesenchymal transition program and reemergence of an immature, thymic profile. Introduction of NPM-ALK was, however, not sufficient to convert healthy T cells to malignant clones, as this process required activation of T-cell receptor signaling. The study sets the stage for modeling early genetic changes in human tumors.See related article by Pawlicki et al., p. 3241.
Asunto(s)
Linfoma Anaplásico de Células Grandes , Proteínas Tirosina Quinasas , Quinasa de Linfoma Anaplásico , Animales , Ratones , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Linfocitos T/metabolismoRESUMEN
Chemo-immunotherapy has improved survival in B-cell lymphoma patients, but refractory/relapsed diseases still represent a major challenge, urging for development of new therapeutics. Karonudib (TH1579) was developed to inhibit MTH1, an enzyme preventing oxidized dNTP-incorporation in DNA. MTH1 is highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, hence confirming a rationale for targeting MTH1. Here, we tested the efficacy of karonudib in vitro and in preclinical B-cell lymphoma models. Using a range of B-cell lymphoma cell lines, karonudib strongly reduced viability at concentrations well tolerated by activated normal B cells. In B-cell lymphoma cells, karonudib increased incorporation of 8-oxo-dGTP into DNA, and prominently induced prometaphase arrest and apoptosis due to failure in spindle assembly. MTH1 knockout cell lines were less sensitive to karonudib-induced apoptosis, but were displaying cell cycle arrest phenotype similar to the wild type cells, indicating a dual inhibitory role of the drug. Karonudib was highly potent as single agent in two different lymphoma xenograft models, including an ABC DLBCL patient derived xenograft, leading to prolonged survival and fully controlled tumor growth. Together, our preclinical findings provide a rationale for further clinical testing of karonudib in B-cell lymphoma.
Asunto(s)
Linfoma de Burkitt/tratamiento farmacológico , Enzimas Reparadoras del ADN/genética , Linfoma de Células B/tratamiento farmacológico , Monoéster Fosfórico Hidrolasas/genética , Pirimidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN/biosíntesis , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Nucleótidos de Desoxiguanina/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
CAR T cells targeting the B lymphocyte antigen CD19 have led to remarkable clinical results in B cell leukemia and lymphoma but eliminate all B lineage cells, leading to increased susceptibility to severe infections. As malignant B cells will express either immunoglobulin (Ig) light chain κ or λ, we designed a second-generation CAR targeting Igκ, IGK CAR. This construct demonstrated high target specificity but displayed reduced efficacy in the presence of serum IgG. Since CD19 CAR is insensitive to serum IgG, we designed various combinatorial CAR constructs in order to maintain the CD19 CAR T cell efficacy, but with IGK CAR target selectivity. The Kz-19BB design, combining CD19 CAR containing a 4-1BB costimulatory domain with an IGK CAR containing a CD3zeta stimulatory domain, maintained the target specificity of IgK CAR and was resistant to the presence of soluble IgG. Our results demonstrate that a combinatorial CAR approach can improve target selectivity and efficacy.
Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Antígenos CD19/metabolismo , Linfocitos B/metabolismo , Antígenos CD28/metabolismo , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , Linfoma/metabolismo , Receptores Quiméricos de Antígenos/química , Linfocitos T/metabolismoRESUMEN
Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28ζ) outperforms that in tisagenlecleucel (CD19-4-1BBζ) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBζ CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBζ-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. SIGNIFICANCE: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28ζ-CARs outperform 4-1BBζ-CARs when antigen density is low. However, 4-1BBζ-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence.This article is highlighted in the In This Issue feature, p. 627.
Asunto(s)
Receptores Quiméricos de Antígenos/metabolismo , Animales , Humanos , Ratones , Transducción de SeñalRESUMEN
T cells modified to express chimeric antigen receptor (CAR) targeting CD19 (CD19CAR) have produced remarkable clinical responses in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. CD19CAR T-cell therapy has also demonstrated prominent effects in B-cell non-Hodgkin lymphoma (B-NHL) patients. However, a subset of patients who relapse after CD19CAR T-cell therapy have outgrowth of CD19- tumor cells. Hence, development of alternative CARs targeting other B-cell markers represents an unmet medical need for B-cell acute lymphoblastic leukemia and B-NHL. Here, we confirmed previous data by showing that, overall, B-NHL has high expression of CD37. A second-generation CD37CAR was designed, and its efficacy in T cells was compared with that of CD19CAR. In vitro assessment of cytotoxicity and T-cell function upon coculture of the CAR T cells with different target B-cell lymphoma cell lines demonstrated comparable efficacy between the 2 CARs. In an aggressive B-cell lymphoma xenograft model, CD37CAR T cells were as potent as CD19CAR T cells in controlling tumor growth. In a second xenograft model, using U2932 lymphoma cells containing a CD19- subpopulation, CD37CAR T cells efficiently controlled tumor growth and prolonged survival, whereas CD19CAR T cells had limited effect. We further show that, unlike CD19CAR, CD37CAR was not sensitive to antigen masking. Finally, CD37CAR reactivity was restricted to B-lineage cells. Collectively, our results demonstrated that CD37CAR T cells also can effectively eradicate B-cell lymphoma tumors when CD19 antigen expression is lost and support further clinical testing for patients with relapsed/refractory B-NHL.
Asunto(s)
Traslado Adoptivo , Antígenos de Neoplasias/inmunología , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores Quiméricos de Antígenos/inmunología , Tetraspaninas/inmunología , Animales , Antígenos CD19/inmunología , Humanos , Células Jurkat , Células K562 , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Linfoma de Células B/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Ensayos Antitumor por Modelo de XenoinjertoAsunto(s)
Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Linfoma Folicular , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Linfoma Folicular/inmunología , Linfoma Folicular/terapia , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
CD40 expression is required for germinal center (GC) formation and function, but the kinetics and magnitude of signaling following CD40 engagement remain poorly characterized in human B cells undergoing GC reactions. Here, differences in CD40 expression and signaling responses were compared across differentiation stages of mature human tonsillar B cells. A combination of mass cytometry and phospho-specific flow cytometry was used to quantify protein expression and CD40L-induced signaling in primary human naïve, GC, and memory B cells. Protein expression signatures of cell subsets were quantified using viSNE and Marker Enrichment Modeling (MEM). This approach revealed enriched expression of CD40 protein in GC B cells, compared to naïve and memory B cells. Despite this, GC B cells responded to CD40L engagement with lower phosphorylation of NFκB p65 during the first 30 min following CD40L activation. Before CD40L stimulation, GC B cells expressed higher levels of suppressor protein IκBα than naïve and memory B cells. Following CD40 activation, IκBα was rapidly degraded and reached equivalently low levels in naïve, GC, and memory B cells at 30 min following CD40L. Quantifying CD40 signaling responses as a function of bound ligand revealed a correlation between bound CD40L and degree of induced NFκB p65 phosphorylation, whereas comparable IκBα degradation occurred at all measured levels of CD40L binding. These results characterize cell-intrinsic signaling differences that exist in mature human B cells undergoing GC reactions. © 2019 International Society for Advancement of Cytometry.
Asunto(s)
Linfocitos B/fisiología , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Centro Germinal/citología , Memoria Inmunológica , Linfocitos B/citología , Linfocitos B/metabolismo , Ligando de CD40/fisiología , Células Cultivadas , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , FN-kappa B/metabolismo , Fosforilación , Transducción de Señal/inmunologíaRESUMEN
Checkpoint blockade can reverse T-cell exhaustion and promote antitumor responses. Although blocking the PD-1 pathway has been successful in Hodgkin lymphoma, response rates have been modest in B-cell non-Hodgkin lymphoma (NHL). Coblockade of checkpoint receptors may therefore be necessary to optimize antitumor T-cell responses. Here, characterization of coinhibitory receptor expression in intratumoral T cells from different NHL types identified TIGIT and PD-1 as frequently expressed coinhibitory receptors. Tumors from NHL patients were enriched in CD8+ and CD4+ T effector memory cells that displayed high coexpression of TIGIT and PD-1, and coexpression of these checkpoint receptors identified T cells with reduced production of IFNγ, TNFα, and IL2. The suppressed cytokine production could be improved upon in vitro culture in the absence of ligands. Whereas PD-L1 was expressed by macrophages, the TIGIT ligands CD155 and CD112 were expressed by lymphoma cells in 39% and 50% of DLBCL cases and in some mantle cell lymphoma cases, as well as by endothelium and follicular dendritic cells in all NHLs investigated. Collectively, our results show that TIGIT and PD-1 mark dysfunctional T cells and suggest that TIGIT and PD-1 coblockade should be further explored to elicit potent antitumor responses in patients with NHL.
Asunto(s)
Linfoma no Hodgkin/patología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Humanos , Memoria Inmunológica , Ligandos , Linfoma no Hodgkin/metabolismo , Persona de Mediana Edad , Microambiente TumoralRESUMEN
Purpose: T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets.Experimental Design: Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry.Results: TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFNγ, while TCR proximal signaling (p-CD3ζ, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon in vitro culture. The costimulatory receptor CD226 was downregulated in TIGIT+ compared with TIGIT- CD8 FL T cells, further skewing the balance toward immunosuppression.Conclusions: TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. Clin Cancer Res; 24(4); 870-81. ©2017 AACR.
Asunto(s)
Linfoma Folicular/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos/genética , Transducción de Señal/genética , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Folicular/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/metabolismo , Microambiente Tumoral/genéticaRESUMEN
Adoptive cell therapy with T-cell receptor (TCR)-engineered T cells represents a powerful method to redirect the immune system against tumours. However, although TCR recognition is restricted to a specific peptide-MHC (pMHC) complex, increasing numbers of reports have shown cross-reactivity and off-target effects with severe consequences for the patients. This demands further development of strategies to validate TCR safety prior to clinical use. We reasoned that the desired TCR signalling depends on correct pMHC recognition on the outside and a restricted clustering on the inside of the cell. Since the majority of the adverse events are due to TCR recognition of the wrong target, we tested if blocking the signalling would affect the binding. By over-expressing the c-SRC kinase (CSK), a negative regulator of LCK, in redirected T cells, we showed that peripheral blood T cells inhibited anti-CD3/anti-CD28-induced phosphorylation of ERK, whereas TCR proximal signalling was not affected. Similarly, overexpression of CSK together with a therapeutic TCR prevented pMHC-induced ERK phosphorylation. Downstream effector functions were also almost completely blocked, including pMHC-induced IL-2 release, degranulation and, most importantly, target cell killing. The lack of effector functions contrasted with the unaffected TCR expression, pMHC recognition, and membrane exchange activity (trogocytosis). Therefore, co-expression of CSK with a therapeutic TCR did not compromise target recognition and binding, but rendered T cells incapable of executing their effector functions. Consequently, we named these redirected T cells "dummy T cells" and propose to use them for safety validation of new TCRs prior to therapy.
Asunto(s)
Células Presentadoras de Antígenos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Familia-src Quinasas/metabolismo , Proteína Tirosina Quinasa CSK , Muerte Celular , Células Cultivadas , Humanos , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Linfocitos T/citología , Familia-src Quinasas/genéticaRESUMEN
Common variable immunodeficiency (CVID) is defined by hypogammaglobulinemia and B-cell dysfunction, with significant clinical and immunological heterogeneity. Severe non-infectious complications, such as autoimmunity, granulomatous disease and splenomegaly, constitute a major cause of morbidity in CVID patients. T cells are generally regarded important for development of these clinical features. However, while T-cell abnormalities have been found in CVID patients, functional characteristics of T cells corresponding to well-defined clinical subtypes have not been identified. As common γ-chain cytokines play important roles in survival and differentiation of T cells, characterization of their signaling pathways could reveal functional differences of clinical relevance. We characterized CVID T cells functionally by studies of cytokine-induced signaling, and correlated the findings to defined clinical subtypes. Peripheral blood T cells from 29 CVID patients and 19 healthy donors were analyzed for i) phenotype, ii) cytokine-induced (interleukin (IL)-2, IL-4, IL-7 and IL-21) phosphorylation of signal transducer and activator of transcription (STAT) 3, STAT5 and STAT6, and iii) T-helper (Th)1/Th2 polarization. Expression of IL-4 receptor and downstream signaling molecules was measured. A subgroup of CVID patients (n = 7) was identified by impaired IL-4-induced p-STAT6 in naive and memory CD4 and CD8 T cells. This corresponded to patients with the largest accumulation of severe (non-infectious) complications. The signaling defect persisted over years and was not due to constitutively activated p-STAT6. The CD4 T cells were strongly Th1-skewed, but IL-4 signaling was impaired independently of Th status. However, IL-4Rα and Janus kinase (JAK) 1 mRNA levels were significantly lower than in normal donors, providing a likely mechanism for the defective IL-4-induced p-STAT6 and Th1-bias. In conclusion, we identified a subgroup of CVID patients with defective IL-4 signaling in T cells, with severe clinical features of inflammation and autoimmunity.
Asunto(s)
Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/metabolismo , Interleucina-4/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto , Biomarcadores , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/diagnóstico , Femenino , Expresión Génica , Humanos , Inmunofenotipificación , Janus Quinasa 1/metabolismo , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Transcripción STAT6/metabolismo , Índice de Severidad de la Enfermedad , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismoRESUMEN
Selection and maturation of B cells into plasma cells producing high-affinity antibodies occur in germinal centers (GC). GCs form transiently in secondary lymphoid organs upon antigen challenge, and the GC reaction is a highly regulated process. TGF-ß is a potent negative regulator, but the influence of other family members including bone morphogenetic proteins (BMPs) is less known. Studies of human peripheral blood B lymphocytes showed that BMP-6 suppressed plasmablast differentiation, whereas BMP-7 induced apoptosis. Here, we show that human naïve and GC B cells had a strikingly different receptor expression pattern. GC B cells expressed high levels of BMP type I receptor but low levels of type II receptors, whereas naïve B cells had the opposite pattern. Furthermore, GC B cells had elevated levels of downstream signaling components SMAD1 and SMAD5, but reduced levels of the inhibitory SMAD7. Functional assays of GC B cells revealed that BMP-7 suppressed the viability-promoting effect of CD40L and IL-21, but had no effect on CD40L- and IL-21-induced differentiation into plasmablasts. BMP-7-induced apoptosis was counteracted by a selective TGF-ß type I receptor (ALK4/5/7) inhibitor, but not by a selective BMP receptor type I inhibitor. Furthermore, overexpression of truncated ALK5 in a B-cell line counteracted BMP-7-induced apoptosis, whereas overexpression of truncated ALK4 had no effect. BMP-7 mRNA and protein was readily detected in tonsillar B cells, indicating a physiological relevance of the study. Altogether, we identified BMP-7 as a negative regulator of GC B-cell survival. The effect was counteracted by truncated ALK5, suggesting greater complexity in regulating BMP-7 signaling than previously believed.
Asunto(s)
Apoptosis , Linfocitos B/citología , Proteína Morfogenética Ósea 7/metabolismo , Centro Germinal/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Linfocitos B/metabolismo , Proteína Morfogenética Ósea 7/genética , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Centro Germinal/metabolismo , Humanos , Tonsila Palatina/citología , Tonsila Palatina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismoRESUMEN
Patients with common variable immunodeficiency (CVID) constitute a clinically and immunologically heterogeneous group characterized by B-cell dysfunction with hypogammaglobulinemia and defective immunoglobulin class switch of unknown etiology. Current classification systems are insufficient to achieve precise disease management. Characterization of signaling pathways essential for B-cell differentiation and class switch could provide new means to stratify patients. We evaluated constitutive and induced signaling by phospho-specific flow cytometry in 26 CVID patients and 18 healthy blood donors. Strong responses were induced both in CVID and healthy donor B cells upon activation. In contrast, constitutive phosphorylation levels of STAT3,-5,-6, Erk, PLC-γ and Syk were significantly increased in CVID B cells only. Hierarchical clustering revealed a subgroup of CVID patients with elevated constitutive phosphorylation of Syk and PLC-γ. All these patients had non-infectious complications, indicating that a distinct phosphorylation pattern of kinases in B cells identifies a clinically important subgroup of CVID patients.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Inmunodeficiencia Variable Común/inmunología , Fosforilación/inmunología , Fosfotransferasas/inmunología , Adulto , Anciano , Femenino , Humanos , Cambio de Clase de Inmunoglobulina/inmunología , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/inmunología , Adulto JovenRESUMEN
Kinases downstream of B-cell antigen receptor (BCR) represent attractive targets for therapy in non-Hodgkin lymphoma (NHL). As clinical responses vary, improved knowledge regarding activation and regulation of BCR signaling in individual patients is needed. Here, using phosphospecific flow cytometry to obtain malignant B-cell signaling profiles from 95 patients representing 4 types of NHL revealed a striking contrast between chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) tumors. Lymphoma cells from diffuse large B-cell lymphoma patients had high basal phosphorylation levels of most measured signaling nodes, whereas follicular lymphoma cells represented the opposite pattern with no or very low basal levels. MCL showed large interpatient variability in basal levels, and elevated levels for the phosphorylated forms of AKT, extracellular signal-regulated kinase, p38, STAT1, and STAT5 were associated with poor outcome. CLL tumors had elevated basal levels for the phosphorylated forms of BCR-signaling nodes (Src family tyrosine kinase, spleen tyrosine kinase [SYK], phospholipase Cγ), but had low α-BCR-induced signaling. This contrasted MCL tumors, where α-BCR-induced signaling was variable, but significantly potentiated as compared with the other types. Overexpression of CD79B, combined with a gating strategy whereby signaling output was directly quantified per cell as a function of CD79B levels, confirmed a direct relationship between surface CD79B, immunoglobulin M (IgM), and IgM-induced signaling levels. Furthermore, α-BCR-induced signaling strength was variable across patient samples and correlated with BCR subunit CD79B expression, but was inversely correlated with susceptibility to Bruton tyrosine kinase (BTK) and SYK inhibitors in MCL. These individual differences in BCR levels and signaling might relate to differences in therapy responses to BCR-pathway inhibitors.