Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Physiol ; 596(21): 5281-5298, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206945

RESUMEN

KEY POINTS: Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed-forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC. ABSTRACT: The superior colliculus (SC) is a midbrain structure that integrates auditory, somatosensory and visual inputs to drive orientation movements. While much is known about how visual information is processed in the superficial layers of the SC, little is known about the SC circuits in the deep layers that process auditory inputs. We therefore characterized intrinsic neuronal properties in the auditory-recipient layer of the SC (stratum griseum profundum; SGP) and confirmed three electrophysiologically defined clusters of neurons, consistent with literature from other SC layers. To determine the types of inputs to the SGP, we expressed Channelrhodopsin-2 in the nucleus of the brachium of the inferior colliculus (nBIC) and external cortex of the inferior colliculus (ECIC) and optically stimulated these pathways while recording from SGP neurons. Probing the connections in this manner, we described a monosynaptic excitation that additionally drives feed-forward inhibition via circuits intrinsic to the SC. Moreover, we found a profound long-range monosynaptic inhibition in 100% of recorded SGP neurons, a surprising finding considering that only about 15% of SGP-projecting neurons in the nBIC/ECIC are inhibitory. Furthermore, we found spatial differences in the cell body locations as well as axon trajectories between the monosynaptic excitatory and inhibitory inputs, suggesting that these inputs may be functionally distinct. Taking this together with recent anatomical evidence suggesting an auditory excitation from the nBIC and a GABAergic multimodal inhibition from the ECIC, we propose that sensory integration in the SGP is more multifaceted than previously thought.


Asunto(s)
Percepción Auditiva , Potenciales Postsinápticos Inhibidores , Colículos Superiores/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Colículos Superiores/citología
2.
Cell Stem Cell ; 22(6): 865-878.e8, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29779889

RESUMEN

One hallmark of adult neurogenesis is its adaptability to environmental influences. Here, we uncovered the epithelial sodium channel (ENaC) as a key regulator of adult neurogenesis as its deletion in neural stem cells (NSCs) and their progeny in the murine subependymal zone (SEZ) strongly impairs their proliferation and neurogenic output in the olfactory bulb. Importantly, alteration of fluid flow promotes proliferation of SEZ cells in an ENaC-dependent manner, eliciting sodium and calcium signals that regulate proliferation via calcium-release-activated channels and phosphorylation of ERK. Flow-induced calcium signals are restricted to NSCs in contact with the ventricular fluid, thereby providing a highly specific mechanism to regulate NSC behavior at this special interface with the cerebrospinal fluid. Thus, ENaC plays a central role in regulating adult neurogenesis, and among multiple modes of ENaC function, flow-induced changes in sodium signals are critical for NSC biology.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Líquido Extracelular/metabolismo , Células-Madre Neurales/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Líquido Extracelular/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología
3.
Nat Commun ; 9(1): 1771, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720589

RESUMEN

The integration of excitatory and inhibitory synaptic inputs is fundamental to neuronal processing. In the mammalian auditory brainstem, neurons compare excitatory and inhibitory inputs from the ipsilateral and contralateral ear, respectively, for sound localization. However, the temporal precision and functional roles of inhibition in this integration process are unclear. Here, we demonstrate by in vivo recordings from the lateral superior olive (LSO) that inhibition controls spiking with microsecond precision throughout high frequency click trains. Depending on the relative timing of excitation and inhibition, neuronal spike probability is either suppressed or-unexpectedly-facilitated. In vitro conductance-clamp LSO recordings establish that a reduction in the voltage threshold for spike initiation due to a prior hyperpolarization results in post-inhibitory facilitation of otherwise sub-threshold synaptic events. Thus, microsecond-precise differences in the arrival of inhibition relative to excitation can facilitate spiking in the LSO, thereby promoting spatial sensitivity during the processing of faint sounds.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Complejo Olivar Superior/fisiología , Estimulación Acústica , Algoritmos , Animales , Tronco Encefálico/citología , Gerbillinae , Modelos Neurológicos , Inhibición Neural/fisiología , Neuronas/fisiología , Localización de Sonidos/fisiología , Complejo Olivar Superior/citología , Transmisión Sináptica/fisiología , Factores de Tiempo
4.
Nat Commun ; 5: 3790, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24804642

RESUMEN

Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing.


Asunto(s)
Estimulación Acústica , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Localización de Sonidos/fisiología , Complejo Olivar Superior/fisiología , Potenciales Sinápticos/fisiología , Animales , Femenino , Gerbillinae , Glicinérgicos , Audición/fisiología , Masculino , Modelos Neurológicos , Técnicas de Placa-Clamp , Canales de Potasio/fisiología , Sonido , Transmisión Sináptica/fisiología
5.
J Neurosci ; 34(15): 5152-63, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719095

RESUMEN

For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Tolerancia a Medicamentos , Mutación Missense , Receptor Cannabinoide CB1/metabolismo , Secuencias de Aminoácidos , Animales , Sensibilización del Sistema Nervioso Central , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciales de la Membrana , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/fisiología , Fosforilación , Unión Proteica , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/genética , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiología
6.
Nat Neurosci ; 16(12): 1840-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141311

RESUMEN

Across all sensory modalities, the effect of context-dependent neural adaptation can be observed at every level, from receptors to perception. Nonetheless, it has long been assumed that the processing of interaural time differences, which is the primary cue for sound localization, is nonadaptive, as its outputs are mapped directly onto a hard-wired representation of space. Here we present evidence derived from in vitro and in vivo experiments in gerbils indicating that the coincidence-detector neurons in the medial superior olive modulate their sensitivity to interaural time differences through a rapid, GABA(B) receptor-mediated feedback mechanism. We show that this mechanism provides a gain control in the form of output normalization, which influences the neuronal population code of auditory space. Furthermore, psychophysical tests showed that the paradigm used to evoke neuronal GABA(B) receptor-mediated adaptation causes the perceptual shift in sound localization in humans that was expected on the basis of our physiological results in gerbils.


Asunto(s)
Adaptación Fisiológica/fisiología , Núcleo Olivar/citología , Receptores de GABA-B/metabolismo , Localización de Sonidos/fisiología , Sinapsis/fisiología , Estimulación Acústica , Adaptación Fisiológica/efectos de los fármacos , Adulto , Animales , Animales Recién Nacidos , Femenino , GABAérgicos/farmacología , Gerbillinae , Glutamato Descarboxilasa/metabolismo , Humanos , Técnicas In Vitro , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Localización de Sonidos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico/farmacología
7.
J Neurosci ; 32(38): 13004-9, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22993418

RESUMEN

Posttetanic potentiation (PTP) is a transient, calcium-dependent increase in the efficacy of synaptic transmission following elevated presynaptic activity. The calcium-dependent protein kinase C (PKC(Ca)) isoforms PKCα and PKCß mediate PTP at the calyx of Held synapse, with PKCß contributing significantly more than PKCα. It is not known whether PKC(Ca) isoforms play a conserved role in PTP at other synapses. We examined this question at the parallel fiber → Purkinje cell (PF→PC) synapse, where PKC inhibitors suppress PTP. We found that PTP is preserved when single PKC(Ca) isoforms are knocked out and in PKCα/ß double knock-out (dko) mice, even though in the latter all PKC(Ca) isoforms are eliminated from granule cells. However, in contrast to wild-type and single knock-out animals, PTP in PKCα/ß dko animals is not suppressed by PKC inhibitors. These results indicate that PKC(Ca) isoforms mediate PTP at the PF→PC synapse in wild-type and single knock-out animals. However, unlike the calyx of Held, at the PF→PC synapse either PKCα or PKCß alone is sufficient to mediate PTP, and if both isoforms are eliminated a compensatory PKC-independent mechanism preserves the plasticity. These results suggest that a feedback mechanism allows granule cells to maintain the normal properties of short-term synaptic plasticity even when the mechanism that mediates PTP in wild-type mice is eliminated.


Asunto(s)
Adaptación Fisiológica/fisiología , Calcio/metabolismo , Cerebelo/citología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C/metabolismo , Adaptación Fisiológica/genética , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/genética , Femenino , GABAérgicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Piperidinas/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Proteína Quinasa C/deficiencia , Proteína Quinasa C beta , Proteína Quinasa C-alfa/deficiencia , Pirazoles/farmacología
8.
Neuron ; 70(5): 1005-19, 2011 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-21658591

RESUMEN

High-frequency stimulation leads to a transient increase in the amplitude of evoked synaptic transmission that is known as posttetanic potentiation (PTP). Here we examine the roles of the calcium-dependent protein kinase C isoforms PKCα and PKCß in PTP at the calyx of Held synapse. In PKCα/ß double knockouts, 80% of PTP is eliminated, whereas basal synaptic properties are unaffected. PKCα and PKCß produce PTP by increasing the size of the readily releasable pool of vesicles evoked by high-frequency stimulation and by increasing the fraction of this pool released by the first stimulus. PKCα and PKCß do not facilitate presynaptic calcium currents. The small PTP remaining in double knockouts is mediated partly by an increase in miniature excitatory postsynaptic current amplitude and partly by a mechanism involving myosin light chain kinase. These experiments establish that PKCα and PKCß are crucial for PTP and suggest that long-lasting presynaptic calcium increases produced by tetanic stimulation may activate these isoforms to produce PTP.


Asunto(s)
Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C/metabolismo , Sinapsis/fisiología , Techo del Mesencéfalo/citología , Animales , Azepinas/farmacología , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Ésteres del Forbol/farmacología , Terminales Presinápticos/fisiología , Proteína Quinasa C/deficiencia , Proteína Quinasa C beta , Proteína Quinasa C-alfa/deficiencia , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Teprotido/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
9.
J Neurosci ; 31(14): 5235-43, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21471358

RESUMEN

R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium/calmodulin-sensitive potassium channel that in turn regulates postsynaptic hippocampal long-term potentiation (LTP). Here, we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that, within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels.


Asunto(s)
Canales de Calcio Tipo R/metabolismo , Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Microdominios de Membrana/metabolismo , Terminales Presinápticos/fisiología , Células de Purkinje/fisiología , Antagonistas del Receptor de Adenosina A1/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Cerebelo/citología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Níquel/farmacología , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Piperidinas/farmacología , Terminales Presinápticos/efectos de los fármacos , Propanolaminas/farmacología , Células de Purkinje/citología , Pirazoles/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/farmacología , Tetrodotoxina/farmacología , Xantinas/farmacología , omega-Agatoxina IVA/farmacología , omega-Conotoxina GVIA/farmacología
10.
J Neurophysiol ; 105(2): 958-63, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21084685

RESUMEN

Endocannabinoids are potent regulators of synaptic strength. They are generally thought to modify neurotransmitter release through retrograde activation of presynaptic type 1 cannabinoid receptors (CB1Rs). In the cerebellar cortex, CB1Rs regulate several forms of synaptic plasticity at synapses onto Purkinje cells, including presynaptically expressed short-term plasticity and, somewhat paradoxically, a postsynaptic form of long-term depression (LTD). Here we have generated mice in which CB1Rs were selectively eliminated from cerebellar granule cells, whose axons form parallel fibers. We find that in these mice, endocannabinoid-dependent short-term plasticity is eliminated at parallel fiber, but not inhibitory interneuron, synapses onto Purkinje cells. Further, parallel fiber LTD is not observed in these mice, indicating that presynaptic CB1Rs regulate long-term plasticity at this synapse.


Asunto(s)
Cerebelo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
J Neurosci ; 29(24): 7803-14, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535592

RESUMEN

Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/fisiología , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Factores de Edad , Análisis de Varianza , Animales , Benzofuranos/metabolismo , Fenómenos Biofísicos , Calcio/metabolismo , Cerebelo/citología , Dendritas/efectos de los fármacos , Estimulación Eléctrica/métodos , Éteres Cíclicos/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Pirazoles/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/fisiología , Receptores de Glutamato/fisiología , Transducción de Señal/efectos de los fármacos , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA