Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 14(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39061433

RESUMEN

The purpose of our study was to obtain evidence that an unsupervised tele-exercise program (TEgroup) via an online platform is a feasible alternative to a hybrid mode of supervised and unsupervised exercise (HEgroup) sessions for improving fitness indexes, respiratory and cognitive functions, and biomarkers of oxidative stress in patients recovering from COVID-19. Forty-nine patients with long post-COVID-19 were randomly divided into two groups (HEgroup: n = 24, age 60.0 ± 9.5 years versus TEgroup: n = 25, age 58.7 ± 9.5 years). For each patient, we collected data from body composition, oxidative stress, pulmonary function, physical fitness, and cognitive function before and after the 12-week exercise rehabilitation program (ERP). Our data showed differences in both groups before and after 12-week ERP on fitness indicators, body composition, and pulmonary function indicators. Our findings demonstrated differences between groups after 12-week ERP on adjustment in the domains of cognitive function (HEgroup increased the "visuospatial" domain: 3.2 ± 1.1 versus 3.5 ± 0.8 score, p = 0.008 and TEgroup increased the "memory" domain: 3.3 ± 1.0 versus 3.8 ± 0.5 score, p = 0.003; after 12-week ERP showed differences between groups in domain "attention" TEgroup: 4.8 ± 1.5 versus HEgroup: 3.6 ± 1.8 score, p = 0.014) and the diffusing capacity for carbon monoxide (HEgroup increased the percent of predicted values at 0.5 ± 32.3% and TEgroup at 26.0 ± 33.1%, p < 0.001). These findings may be attributed to the different ways of learning exercise programs, resulting in the recruitment of different neural circuits.

2.
Front Public Health ; 11: 1115393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908417

RESUMEN

Long-post-coronavirus disease-2019 (COVID-19) patients tend to claim residual symptomatology from various systems, most importantly the respiratory and central nervous systems. Breathlessness and brain fog are the main complaints. The pulmonary function pattern is consistent with restrictive defects, which, in most cases, are self-resolved, while the cognitive profile may be impaired. Rehabilitation is an ongoing field for holistic management of long-post-COVID-19 patients. Virtual reality (VR) applications may represent an innovative implementation of rehabilitation. We aimed to investigate the effect of exercise with and without the VR system and to assess further breathlessness and functional fitness indicators in long-post-COVID-19 patients with mild cognitive impairment after self-selected exercise duration using the VR system. Twenty long-post-COVID-19 patients were enrolled in our study (age: 53.9 ± 9.1 years, male: 80%, body mass index: 28.1 ± 3.1 kg/m2). Participants' anthropometric data were recorded, and they underwent pulmonary functional test evaluation as well as sleep quality and cognitive assessment. The participants randomly exercised with and without a VR system (VR vs. no-VR) and, later, self-selected the exercise duration using the VR system. The results showed that exercise with VR resulted in a lower dyspnea score than exercise without VR. In conclusion, VR applications seem to be an attractive and safe tool for implementing rehabilitation. They can enhance performance during exercise and benefit patients with both respiratory and cognitive symptoms.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Realidad Virtual , Adulto , Humanos , Masculino , Persona de Mediana Edad , Disnea , Modalidades de Fisioterapia
3.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077138

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Parkinsonianos , COVID-19/complicaciones , Comunicación Celular , Humanos , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/patología , ARN Viral , SARS-CoV-2 , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...