Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0302283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900825

RESUMEN

Pollination biology in the widespread species Impatiens capensis Meerb. has only been studied in America, specifically in zones of the U.S.A. and Canada. In this study, we investigated the pollination biology of I. capensis using an integrative identification approach using morphological and molecular tools in four populations of Northwest Poland. We also determined and compared the functional characteristics of the pollinators of the introduced species from the study sites and the native ones reported, for the latter collecting information from bibliographic sources. Visitors were identified using standard morphological keys, including identifying and classifying insect mouthparts. Molecular identification was carried out using mitochondrial DNA's cytochrome oxidase subunit I (COI). We morphologically identified 20 species of visitors constituted by 17 pollinators and three nectar robbers. DNA barcoding of 59 individuals proved the identification of 18 species (also 18 BINs). The frequency of pollinator species was primarily made up of representatives of both Hymenoptera (75%) and Diptera (21%). The morphological traits, such as the chewing and sucking mouthparts, small and big body height, and robber and pollinator behavior explained mainly the native and introduced visitors' arrangements that allow pollination success. However, to understand the process comprehensively, further investigation of other causalities in pollination success and understanding the diversity of pollinators in outer native ranges are necessary.


Asunto(s)
Impatiens , Especies Introducidas , Polinización , Polinización/fisiología , Animales , Impatiens/fisiología , Impatiens/genética , Dípteros/fisiología , Dípteros/anatomía & histología , Polonia , Código de Barras del ADN Taxonómico , Himenópteros/fisiología
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139088

RESUMEN

The study of the semiochemicals produced by the flowers of Impatiens spp. is an important topic that may explain the reason for the rapid expansion of some species in this genus. Impatiens L. belongs to the Balsaminaceae family, which includes several species considered to be invasive plants in Europe. This study aimed to characterize the phytochemistry of four naturally occurring plant species in Poland, including three invasive alien taxa (Impatiens parviflora, I. glandulifera, and I. capensis) and one native species (I. noli-tangere). Gas chromatographic techniques were used to assess phytochemical profiles of chemical attractant cues in their pollination biology. We detected differences in the scent profiles of the investigated species. All the examined Impatiens species produce various alcohols, i.e., heptacosanol, octacosanol, aldehydes (e.g., octadecanal, eicosanal, etc.), and fatty acids, as well as long-chain hydrocarbons such as dodecane, tricosane, petacosane, hexacosane, and farnesene. Impatiens parviflora, I. glandulifera, and I. capensis produce geraniol and linalool, which attract members of the Apidae family, including bumblebees and honeybees. Impatiens parviflora also produces linalool-derived monoterpenes (linalool oxide and 8-hydroxylinalool), which are a strong attractant for Diptera; this may clarify why the species is mainly visited and pollinated by syrphid flies. A list of insect visitors to the Impatiens species under study can be found in the article.


Asunto(s)
Balsaminaceae , Abejas , Animales , Flores , Feromonas
3.
Sci Total Environ ; 850: 157959, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964758

RESUMEN

AIMS: The present study is the first-ever attempt to generate information on the potential present and future distribution of Impatiens capensis (orange balsam) under various climate change scenarios. Moreover, the differences in bioclimatic preferences of native and non-native populations were evaluated. LOCATION: Global. TAXON: Angiosperms. METHODS: A database of I. capensis localities was compiled based on the public database - the Global Biodiversity Information Facility (GBIF), herbarium specimens, and a field survey in Poland. The initial dataset was verified, and each record was assigned to one of two groups - native (3664 records from North America) or non-native (750 records from Europe and the western part of North America). The analyses involved bioclimatic variables in 2.5 arc-minutes of interpolated climate surface downloaded from WorldClim v. 2.1. MaxEnt version 3.3.2 was used to conduct the ecological niche modeling based on presence-only observations of I. capensis. Forecasts of the future distribution of the climatic niches of the studied species in 2080-2100 were made based on climate projections developed by the CNRM/CERFACS modeling and Model for Interdisciplinary Research on Climate (MIROC-6). MAIN CONCLUSIONS: Distribution models created for "present time" showed slightly broader potential geographical ranges of both native and invasive populations of orange balsam. On the other hand, some areas (e.g. NW Poland, SW Finland), settled by the species, are far outside the modeled climate niche, which indicates a much greater adaptation potential of I. capensis. In addition, the models have shown that climate change will shift the native range of orange balsam to the north and the range of its European populations to the northwest. Moreover, while the coverage of niches suitable for I. capensis in America will extend due to climate change, the European populations will face 31-95 % habitat loss.


Asunto(s)
Cambio Climático , Impatiens , Bálsamos , Biodiversidad , Ecosistema
4.
PeerJ ; 8: e10233, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282550

RESUMEN

Wild greens can contribute to the human diet as an important source of essential nutrients and drugs. Since environmental factors, including soil properties, may affect the chemical composition of plants, it is necessary among others to assess various habitats in terms of their usefulness for wild plant harvesting and to study impact of environmental factors on the qualitative and quantitative chemical composition of plants. This study was aimed at (1) examining the mineral composition of leaves of three dandelion microspecies, (2) determining the variability of macro- and microelement concentrations in dandelion leaves from populations growing on salty, brackish and non-saline coastal meadows, and (3) assessing the effects of different habitat conditions on the mineral composition of dandelion leaves. It was hypothesized that dandelion microspecies would differ significantly in the mineral composition of leaves. It was also expected that soil conditions would significantly affect nutrient concentrations in dandelion leaves, with soil salinity being the most important factor that differentiated studied populations. Leaves of three dandelion microspecies (Taraxacum balticum, T. nordstedtii, T. haematicum) were harvested in Baltic costal grasslands, along the soil salinity gradient, to determine macro- and microelement concentrations. Soil samples collected in the closest vicinity of the harvested plants showed the study sites to differ significantly in their soil properties. Moderately saline and organic soils, rich in potassium (K), magnesium (Mg), and calcium (Ca), supported T. balticum. Moderately or weakly saline and non-saline, organic or mineral soils, with lower median values of K, Mg, and Ca, were typical of T. nordstedtii sites, while the lowest median values of all the soil properties studied were found for T. haematicum sites. Our results proved that dandelion microspecies differ significantly in the mineral composition of their leaves. The between-microspecies differences were significant for all the macroelements except magnesium and all the microelements except molybdenum. Most of the macro- and microelements in leaves of the dandelion microspecies correlated positively and significantly with the soil properties, the strongest correlations being found for soil salinity and the leaf Na, Mn, Ca, Fe, K and Zn contents, followed by soil pH and the leaf Na, Mn, Fe, K, Ca, Zn and Mg. Moreover, the impact of soil properties on the mineral contents in leaves of the dandelions we examined seems to be stronger than the genetic differences between dandelion microspecies. Results of our studies on mineral composition of dandelion leaves lend support to the contention that wild greens provide essential mineral nutrients to the diet. Coastal meadows, fed by the brackish water of the Baltic Sea and free of anthropogenic pollution, are a good habitat to collect wild greens from.

5.
PeerJ ; 8: e10156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240597

RESUMEN

Impatiens capensis is an annual plant native to eastern North America that is currently spreading across Europe. In Poland, due to this plant's rapid spread in the secondary range and high competitiveness in relation to native species, it is considered a locally invasive species. The microstructure of seeds is an important tool for solving various taxonomic problems and also provides data useful for determining the impact of various environmental factors on the phenotypic variability of species. This issue is particularly important in regard to invasive species which occupy a wide range of habitats in the invaded range. There are few reports on seed size and thus far no descriptions of the seed ultrastructure of I. capensis in the analyzed literature. We present new data on the seed morphology of I. capensis growing in different habitats and conditions in the secondary range of the species. The studied populations differed significantly in each of the investigated traits (seed length, width, circumference, area, roundness, and mass). Our findings showed that anthropogenic disturbances in habitats and some soil parameters (presence of carbonates, potassium, loose sand, and moisture) were statistically significant with various seed sizes and morphology in the studied populations of I. capensis. Moreover, our studies showed maximum seed length (5.74 mm) and width (3.21 mm) exceeding those values given in the available literature. For the first time, we also provide a detailed SEM study of the ultrastructure of the seed coat of I. capensis. There are two types of epidermal cells on the seeds: (a) between the ribs (elongated with straight anticlinal walls, slightly concave outer periclinal walls, and micropapillate secondary sculpture on the edges with anticyclic walls), and (b) on the ribs (isodiametric cells with straight anticlinal walls and concave outer periclinal walls). Unlike the variability of size and weight of seeds, the coat ornamentation has turned out to be a steady feature within the studied secondary range of I. capensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...