Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 95(6): e28863, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310127

RESUMEN

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Ratas , Acetamidas , Enzima Convertidora de Angiotensina 2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/terapia , Modelos Animales de Enfermedad , Ratones Transgénicos , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , SARS-CoV-2/genética
2.
J Antimicrob Chemother ; 78(4): 923-932, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880170

RESUMEN

BACKGROUND: Although polymyxin has been used as a last-resort antibiotic against resistant bacteria, its use is restricted due to nephrotoxicity and neurotoxicity. While the present antibiotic resistance issue compels clinicians to reconsider polymyxin use in severe illness cases, polymyxin-resistant microorganisms exert an effect. OBJECTIVES: To address the issue of antibiotic resistance, the cycle of developing new antibiotics to counteract emerging resistance must be discontinued. Here we tried to develop novel therapies that do not rely on direct antimicrobial activity and thus do not promote antibiotic resistance. METHODS: By a high-throughout screening system based on bacterial respiration, chemical compounds accelerating the antimicrobial effects of polymyxin B were screened. In vitro and in vivo tests were performed to validate adjuvanticity. In addition, membrane depolarization and total transcriptome analysis were used to determine molecular mechanisms. RESULTS: PA108, a newly discovered chemical compound, was used to eradicate polymyxin-resistant A. baumannii and three other species in the presence of polymyxin B at concentrations less than the MIC. Since this molecule lacks self-bactericidal action, we hypothesized that PA108 acts as an antibiotic adjuvant, enhancing the antimicrobial activity of polymyxin B against resistant bacteria. At working concentrations, no toxicity was observed in cell lines or mice, although co-treatment with PA108 and polymyxin B increased survival of infected mouse and decreased bacterial loads in organs. CONCLUSIONS: Boosting antibiotic efficiency through the use of antibiotic adjuvants holds significant promise for tackling the rise in bacterial antibiotic resistance.


Asunto(s)
Acinetobacter baumannii , Polimixina B , Animales , Ratones , Polimixina B/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polimixinas/farmacología , Pruebas de Sensibilidad Microbiana
3.
Bioorg Med Chem Lett ; 85: 129214, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870624

RESUMEN

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten human health and create socioeconomic problems worldwide. A library of 200,000 small molecules from the Korea Chemical Bank (KCB) were evaluated for their inhibitory activities against SARS-CoV-2 in a phenotypic-based screening assay to discover new therapeutics to combat COVID-19. A primary hit of this screen was the quinolone structure-containing compound 1. Based on the structure of compound 1 and enoxacin, which is a quinolone-based antibiotic previously reported to have weak activity against SARS-CoV-2, we designed and synthesized 2-aminoquinolone acid derivatives. Among them, compound 9b exhibited potent antiviral activity against SARS-CoV-2 (EC50 = 1.5 µM) without causing toxicity, while having satisfactory in vitro PK profiles. This study shows that 2-aminoquinolone acid 9b provides a promising new template for developing anti-SARS-CoV-2 entry inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas
4.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956872

RESUMEN

The heterocyclic indole structure has been shown to be one of the most promising scaffolds, offering various medicinal advantages from its wide range of biological activity. Nonetheless, the significance of 3-oxindole has been less known. In this study, a series of novel 3-oxindole-2-carboxylates were synthesized and their antiviral activity against human immunodeficiency virus-1 (HIV-1) infection was evaluated. Among these, methyl (E)-2-(3-chloroallyl)-4,6-dimethyl-one (6f) exhibited the most potent inhibitory effect on HIV-1 infection, with a half-maximal inhibitory concentration (IC50) of 0.4578 µM but without severe cytotoxicity (selectivity index (SI) = 111.37). The inhibitory effect of these compounds on HIV-1 infection was concordant with their inhibitory effect on the viral replication cycle. Mode-of-action studies have shown that these prominent derivatives specifically inhibited the Tat-mediated viral transcription on the HIV-1 LTR promoter instead of reverse transcription or integration. Overall, our findings indicate that 3-oxindole derivatives could be useful as a potent scaffold for the development of a new class of anti-HIV-1 agents.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Humanos , Oxindoles/farmacología , Transcripción Viral , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35890130

RESUMEN

We previously reported the potent antiviral effect of the 2-aminoquinazolin-4-(3H)-one 1, which shows significant activity (IC50 = 0.23 µM) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with no cytotoxicity. However, it is necessary to improve the in vivo pharmacokinetics of compound 1 because its area under the curve (AUC) and maximum plasma concentration are low. Here, we designed and synthesized N-substituted quinazolinone derivatives that had good pharmacokinetics and that retained their inhibitory activity against SARS-CoV-2. These compounds were conveniently prepared on a large scale through a one-pot reaction using Dimroth rearrangement as a key step. The synthesized compounds showed potent inhibitory activity, low binding to hERG channels, and good microsomal stability. In vivo pharmacokinetic studies showed that compound 2b had the highest exposure (AUC24h = 41.57 µg∙h/mL) of the synthesized compounds. An in vivo single-dose toxicity evaluation of compound 2b at 250 and 500 mg/kg in rats resulted in no deaths and an approximate lethal dose greater than 500 mg/kg. This study shows that N-acetyl 2-aminoquinazolin-4-(3H)-one 2b is a promising lead compound for developing anti-SARS-CoV-2 agents.

6.
Bull Korean Chem Soc ; 43(3): 412-416, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35440837

RESUMEN

Despite the continuing global crisis caused by coronavirus disease 2019 (COVID-19), there is still no effective treatment. Therefore, we designed and synthesized a novel series of 2-benzylaminoquinazolin-4(3H)-one derivatives and demonstrated that they are effective against SARS-CoV-2. Among the synthesized derivatives, 7-chloro-2-(((4-chlorophenyl)(phenyl)methyl)amino)quinazolin-4(3H)-one (Compound 39) showed highest anti-SARS-CoV-2 activity, with a half-maximal inhibitory concentration value greater than that of remdesivir (IC50 = 4.2 µM vs. 7.6 µM, respectively), which gained urgent approval from the U.S. Food and Drug Administration. In addition, Compound 39 showed good results in various assays measuring metabolic stability, human ether a-go-go, Cytochromes P450 (CYPs) inhibition, and plasma protein binding (PPB), and showed better solubility and pharmacokinetics than our previous work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...