Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(9): e0291972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37747904

RESUMEN

The high prevalence of oral potentially-malignant disorders exhibits diverse severity and risk of malignant transformation, which mandates a Point-of-Care diagnostic tool. Low patient compliance for biopsies underscores the need for minimally-invasive diagnosis. Oral cytology, an apt method, is not clinically applicable due to a lack of definitive diagnostic criteria and subjective interpretation. The primary objective of this study was to identify and evaluate the efficacy of biomarkers for cytology-based delineation of high-risk oral lesions. A comprehensive systematic review and meta-analysis of biomarkers recognized a panel of markers (n: 10) delineating dysplastic oral lesions. In this observational cross sectional study, immunohistochemical validation (n: 131) identified a four-marker panel, CD44, Cyclin D1, SNA-1, and MAA, with the best sensitivity (>75%; AUC>0.75) in delineating benign, hyperplasia, and mild-dysplasia (Low Risk Lesions; LRL) from moderate-severe dysplasia (High Grade Dysplasia: HGD) along with cancer. Independent validation by cytology (n: 133) showed that expression of SNA-1 and CD44 significantly delineate HGD and cancer with high sensitivity (>83%). Multiplex validation in another cohort (n: 138), integrated with a machine learning model incorporating clinical parameters, further improved the sensitivity and specificity (>88%). Additionally, image automation with SNA-1 profiled data set also provided a high sensitivity (sensitivity: 86%). In the present study, cytology with a two-marker panel, detecting aberrant glycosylation and a glycoprotein, provided efficient risk stratification of oral lesions. Our study indicated that use of a two-biomarker panel (CD44/SNA-1) integrated with clinical parameters or SNA-1 with automated image analysis (Sensitivity >85%) or multiplexed two-marker panel analysis (Sensitivity: >90%) provided efficient risk stratification of oral lesions, indicating the significance of biomarker-integrated cytopathology in the development of a Point-of-care assay.


Asunto(s)
Bioensayo , Receptores de Hialuranos , Humanos , Hiperplasia/diagnóstico , Automatización , Biopsia , Glicosilación , Estudios Observacionales como Asunto
2.
Comput Methods Programs Biomed ; 227: 107205, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36384061

RESUMEN

BACKGROUND AND OBJECTIVES: Cytology is a proven, minimally-invasive cancer screening and surveillance strategy. Given the high incidence of oral cancer globally, there is a need to develop a point-of-care, automated, cytology-based screening tool. Oral cytology image analysis has multiple challenges such as, presence of debris, blood cells, artefacts, and clustered cells, which necessitate a skilled expertise for single-cell detection of atypical cells for diagnosis. The main objective of this study is to develop a semantic segmentation model for Single Epithelial Cell (SEC) separation from fluorescent, multichannel, microscopic oral cytology images and classify the segmented images. METHODS: We have used multi-channel, fluorescent, microscopic images (number of images; n = 2730), which were stained differentially for cytoplasm and nucleus. The cytoplasmic and cell membrane markers used in the study were Mackia Amurensis Agglutinin (MAA; n: 2364) and Sambucus Nigra Agglutinin-1 (SNA-1; n: 366) with a nuclear stain DAPI. The cytology images were labelled for SECs, cluster of cells, artefacts, and blood cells. In this study, we used encoder-decoder models based on the well-established U-Net architecture, modified U-Net and ResNet-34 for multi-class segmentation. The experiments were performed with different class combinations of data to reduce imbalance. The derived MAA dataset (n: 14,706) of SEC, cluster, and artefacts/blood cells were used for developing a classification model. InceptionV3 model and a new custom Convolutional-Neural-Network (CNN) model (Artefact-Net) were trained to classify SNA-1 marker stained segmented images (n:6101). For segmentation models, Intersection Over Union (IoU) and F1 score were used as the evaluation matrices, while the classification models were evaluated using the conventional classification metrics like precision, recall and F1-Score. RESULTS: The U-Net and the modified U-Net models gave the best IoU overall (0.73-0.76) as well as for SEC segmentation (079). The images segmented using the modified U-Net model were classified by Artefact-Net and Inception V3 model with F1 scores of 0.96 and 0.95 respectively. The Artefact-Net, when compared to InceptionV3, provided a better precision and F1 score in classifying clusters (Precision: 0.91 vs 0.80; F1: 0.91 vs 0.86). CONCLUSION: This study establishes a pipeline for SEC segmentation with the segmented component containing only single cells. The pipline will enable automated, cytology-based early detection with reduced bias.


Asunto(s)
Aprendizaje Profundo , Técnicas Citológicas , Células Epiteliales , Separación Celular , Aglutininas
3.
PLoS One ; 14(11): e0224885, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31730638

RESUMEN

Early detection of oral cancer necessitates a minimally invasive, tissue-specific diagnostic tool that facilitates screening/surveillance. Brush biopsy, though minimally invasive, demands skilled cyto-pathologist expertise. In this study, we explored the clinical utility/efficacy of a tele-cytology system in combination with Artificial Neural Network (ANN) based risk-stratification model for early detection of oral potentially malignant (OPML)/malignant lesion. A portable, automated tablet-based tele-cytology platform capable of digitization of cytology slides was evaluated for its efficacy in the detection of OPML/malignant lesions (n = 82) in comparison with conventional cytology and histology. Then, an image pre-processing algorithm was established to segregate cells, ANN was trained with images (n = 11,981) and a risk-stratification model developed. The specificity, sensitivity and accuracy of platform/ stratification model were computed, and agreement was examined using Kappa statistics. The tele-cytology platform, Cellscope, showed an overall accuracy of 84-86% with no difference between tele-cytology and conventional cytology in detection of oral lesions (kappa, 0.67-0.72). However, OPML could be detected with low sensitivity (18%) in accordance with the limitations of conventional cytology. The integration of image processing and development of an ANN-based risk stratification model improved the detection sensitivity of malignant lesions (93%) and high grade OPML (73%), thereby increasing the overall accuracy by 30%. Tele-cytology integrated with the risk stratification model, a novel strategy established in this study, can be an invaluable Point-of-Care (PoC) tool for early detection/screening in oral cancer. This study hence establishes the applicability of tele-cytology for accurate, remote diagnosis and use of automated ANN-based analysis in improving its efficacy.


Asunto(s)
Citodiagnóstico/métodos , Detección Precoz del Cáncer , Neoplasias de la Boca/diagnóstico , Sistemas de Atención de Punto , Telemedicina/métodos , Algoritmos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Medición de Riesgo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...