Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 150-151: 28-34, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37095033

RESUMEN

Mutations in the gene encoding the Adenomatous polyposis coli protein (APC) were discovered as driver mutations in colorectal cancers almost 30 years ago. Since then, the importance of APC in normal tissue homeostasis has been confirmed in a plethora of other (model) organisms spanning a large evolutionary space. APC is a multifunctional protein, with roles as a key scaffold protein in complexes involved in diverse signalling pathways, most prominently the Wnt signalling pathway. APC is also a cytoskeletal regulator with direct and indirect links to and impacts on all three major cytoskeletal networks. Correspondingly, a wide range of APC binding partners have been identified. Mutations in APC are extremely strongly associated with colorectal cancers, particularly those that result in the production of truncated proteins and the loss of significant regions from the remaining protein. Understanding the complement of its role in health and disease requires knowing the relationship between and regulation of its diverse functions and interactions. This in turn requires understanding its structural and biochemical features. Here we set out to provide a brief overview of the roles and function of APC and then explore its conservation and structure using the extensive sequence data, which is now available, and spans a broad range of taxonomy. This revealed conservation of APC across taxonomy and new relationships between different APC protein families.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Poliposis Adenomatosa del Colon , Humanos , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/metabolismo , Mutación , Citoesqueleto/metabolismo , Vía de Señalización Wnt/genética
2.
PLoS Biol ; 17(11): e3000540, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31770366

RESUMEN

Interleukin-22 (IL-22) is a critical immune defence cytokine that maintains intestinal homeostasis and promotes wound healing and tissue regeneration, which can support the growth of colorectal tumours. Mutations in the adenomatous polyposis coli gene (Apc) are a major driver of familial colorectal cancers (CRCs). How IL-22 contributes to APC-mediated tumorigenesis is poorly understood. To investigate IL-22 signalling in wild-type (WT) and APC-mutant cells, we performed RNA sequencing (RNAseq) of IL-22-treated murine small intestinal epithelial organoids. In WT epithelia, antimicrobial defence and cellular stress response pathways were most strongly induced by IL-22. Surprisingly, although IL-22 activates signal transducer and activator of transcription 3 (STAT3) in APC-mutant cells, STAT3 target genes were not induced. Our analyses revealed that ApcMin/Min cells are resistant to IL-22 due to reduced expression of the IL-22 receptor, and increased expression of inhibitors of STAT3, particularly histone deacetylases (HDACs). We further show that IL-22 increases DNA damage and genomic instability, which can accelerate cellular transition from heterozygosity (ApcMin/+) to homozygosity (ApcMin/Min) to drive tumour formation. Our data reveal an unexpected role for IL-22 in promoting early tumorigenesis while excluding a function for IL-22 in transformed epithelial cells.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Células Epiteliales/metabolismo , Interleucinas/metabolismo , Poliposis Adenomatosa del Colon/genética , Animales , Carcinogénesis/genética , Neoplasias Colorrectales/metabolismo , Citocinas/metabolismo , Femenino , Interleucinas/genética , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Interleucina-22
3.
Bull Math Biol ; 80(2): 335-359, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29234982

RESUMEN

Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work.


Asunto(s)
Mucosa Intestinal/anatomía & histología , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Muerte Celular , Proliferación Celular , Tamaño de la Célula , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/fisiopatología , Simulación por Computador , Homeostasis , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Conceptos Matemáticos , Modelos Anatómicos
4.
PLoS Biol ; 14(6): e1002491, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27348469

RESUMEN

The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission.


Asunto(s)
Mucosa Intestinal/citología , Células de Paneth/citología , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células Madre , Células Madre/citología , Factores de Edad , Animales , Adhesión Celular , Recuento de Células , División Celular , Proliferación Celular , Integrina beta4/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Modelos Biológicos , Organoides/citología , Organoides/metabolismo , Células de Paneth/metabolismo , Receptores Acoplados a Proteínas G/genética , Células Madre/metabolismo
5.
Bioessays ; 36(9): 818-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24943963

RESUMEN

Regulation of microtubule (MT) dynamics is essential for many cellular processes, but the machinery that controls MT dynamics remains poorly understood. MT plus-end tracking proteins (+TIPs) are a set of MT-associated proteins that dynamically track growing MT ends and are uniquely positioned to govern MT dynamics. +TIPs associate with each other in a complex array of inter- and intra-molecular interactions known as the "+TIP network." Why do so many +TIPs bind to other +TIPs? Typical answers include the ideas that these interactions localize proteins where they are needed, deliver proteins to the cortex, and/or create regulatory pathways. We propose an additional and more mechanistic hypothesis: that +TIPs bind each other to create a superstructure that promotes MT assembly by constraining the structural fluctuations of the MT tip, thus acting as a polymerization chaperone.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Humanos , Chaperonas Moleculares/metabolismo , Mapas de Interacción de Proteínas , Multimerización de Proteína
6.
PLoS One ; 8(11): e80516, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260407

RESUMEN

Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.


Asunto(s)
Movimiento Celular/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Modelos Biológicos , Animales , División Celular , Proliferación Celular , Tamaño de la Célula , Simulación por Computador , Ratones
7.
Philos Trans R Soc Lond B Biol Sci ; 368(1629): 20130014, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062584

RESUMEN

Cell and tissue polarity are tightly coupled and are vital for normal tissue homeostasis. Changes in cellular and tissue organization are common to even early stages of disease, particularly cancer. The digestive tract is the site of the second most common cause of cancer deaths in the developed world. Tumours in this tissue arise in an epithelium that has a number of axes of cell and tissue polarity. Changes in cell and tissue polarity in response to genetic changes that are known to underpin disease progression provide clues about the link between molecular-, cellular- and tissue-based mechanisms that accompany cancer. Mutations in adenomatous polyposis coli (APC) are common to most colorectal cancers in humans and are sufficient to cause tumours in mouse intestine. Tissue organoids mimic many features of whole tissue and permit identifying changes at different times after inactivation of APC. Using gut organoids, we show that tissue polarity is lost very early during cancer progression, whereas cell polarity, at least apical-basal polarity, is maintained and changes only at later stages. These observations reflect the situation in tumours and validate tissue organoids as a useful system to investigate the relationship between cell polarity and tissue organization.


Asunto(s)
Poliposis Adenomatosa del Colon/fisiopatología , Carcinogénesis/patología , Polaridad Celular/fisiología , Tracto Gastrointestinal/citología , Organoides/citología , Animales , Adhesión Celular/fisiología , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Organoides/fisiopatología
9.
PLoS One ; 7(6): e38102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719865

RESUMEN

The tumour suppressor Adenomatous Polyposis Coli (APC) is required for proper mitosis; however, the exact role of APC in mitosis is not understood. Using demembranated sperm chromatin exposed to meiotic Xenopus egg extract and HeLa cells expressing fluorescently labelled histones, we established that APC contributes to chromatin compaction. Sperm chromatin in APC-depleted Xenopus egg extract frequently formed tight round or elongated structures. Such abnormally compacted chromatin predominantly formed spindles with low microtubule content. Furthermore, in mitotic HeLa cells expressing GFP- and mCherry-labelled H2B histones, depletion of APC caused a decrease in the donor fluorescence lifetime of neighbouring fluorophores, indicative of excessive chromatin compaction. Profiling the chromatin-associated proteome of sperm chromatin incubated with Xenopus egg extracts revealed temporal APC-dependent changes in the abundance of histones, closely mirrored by chromatin-associated Topoisomerase IIa, condensin I complex and Kif4. In the absence of APC these factors initially accumulated on chromatin, but then decreased faster than in controls. We also found and validated significant APC-dependent changes in chromatin modifiers Set-a and Rbbp7. Both were decreased on chromatin in APC-depleted extract; in addition, the kinetics of association of Set-a with chromatin was altered in the absence of APC.


Asunto(s)
Cromatina/metabolismo , Genes APC , Mitosis , Animales , Colorantes Fluorescentes , Células HeLa , Humanos , Masculino , Proteoma , Espermatozoides/enzimología , Espermatozoides/metabolismo , Telomerasa/metabolismo , Xenopus
10.
PLoS Comput Biol ; 8(5): e1002515, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654652

RESUMEN

The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.


Asunto(s)
Membrana Basal/citología , Membrana Basal/fisiología , Comunicación Celular/fisiología , Colon/citología , Colon/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Modelos Biológicos , Animales , Simulación por Computador , Humanos
11.
Dis Model Mech ; 5(6): 940-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22563063

RESUMEN

Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC) tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating ß-catenin-binding sites from APC, which leads to upregulation of ß-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC) results in loss of directionality, but not speed, of cell motility independently of changes in ß-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APC(Min/+); multiple intestinal neoplasia model) demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APC(Min/+) intestines are overpopulated with cells, suggesting that a lack of migration might cause cell accumulation in a precancerous state.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/química , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Movimiento Celular , Transformación Celular Neoplásica/patología , Genes Dominantes , Modelos Animales , Fragmentos de Péptidos/metabolismo , Poliposis Adenomatosa del Colon/patología , Animales , Transformación Celular Neoplásica/metabolismo , Embrión de Pollo , Dictyostelium/citología , Dictyostelium/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Femenino , Intestino Delgado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Línea Primitiva/metabolismo , Línea Primitiva/patología
12.
J Cell Sci ; 125(Pt 4): 887-95, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22399804

RESUMEN

Colorectal cancers commonly carry truncation mutations in the adenomatous polyposis coli (APC) gene. The APC protein contributes to the stabilization of microtubules. Consistently, microtubules in cells lacking APC depolymerize more readily in response to microtubule-destabilizing drugs. This raises the possibility that such agents are suitable for treatment of APC-deficient cancers. However, APC-deficient cells have a compromised spindle assembly checkpoint, which renders them less sensitive to killing by microtubule poisons whose toxicity relies on the induction of prolonged mitotic arrest. Here, we describe the novel discovery that the clinically used microtubule-depolymerizing drug vinorelbine (Navelbine) kills APC-deficient cells in culture and in intestinal tissue more effectively than it kills wild-type cells. This is due to the ability of vinorelbine to kill cells in interphase independently of mitotic arrest. Consistent with a role for p53 in cell death in interphase, depletion of p53 renders cells less sensitive to vinorelbine, but only in the presence of wild-type APC. The pro-apoptotic protein BIM (also known as BCL2L11) is recruited to mitochondria in response to vinorelbine, where it can inhibit the anti-apoptotic protein BCL2, suggesting that BIM mediates vinorelbine-induced cell death. This recruitment of BIM is enhanced in cells lacking APC. Consistently, BIM depletion dampens the selective effect of vinorelbine on these cells. Our findings reveal that vinorelbine is a potential therapeutic agent for colorectal cancer, but they also illustrate the importance of the APC tumour suppressor status when predicting therapeutic efficacy.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Vinblastina/análogos & derivados , Adenoma/tratamiento farmacológico , Adenoma/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Ciclo Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Interfase/efectos de los fármacos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Vinblastina/farmacología , Vinorelbina
13.
Cell Stem Cell ; 6(2): 175-81, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20144789

RESUMEN

The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to the apical surface specifically in the stem cell compartments of mouse and human intestine and colon. This orientation correlates with the asymmetric retention of label-retaining DNA. Both the preference for perpendicular spindle alignment and asymmetric label retention are lost in precancerous tissue heterozygous for the adenomatous polyposis coli tumor suppressor (Apc). This loss correlates with cell shape changes specifically in the stem cell compartment. Our data suggest that loss of asymmetric division in stem cells might contribute to the oncogenic effect of Apc mutations in gut epithelium.


Asunto(s)
Colon/citología , Células Epiteliales/citología , Intestinos/citología , Lesiones Precancerosas/patología , Huso Acromático/metabolismo , Células Madre/citología , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , División Celular , Forma de la Célula , Colon/metabolismo , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Células Madre/metabolismo
14.
J Cell Sci ; 123(Pt 5): 736-46, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20144988

RESUMEN

Mutations in the tumour suppressor Adenomatous polyposis coli (Apc) initiate most sporadic colorectal cancers. Apc is implicated in regulating microtubule (MT) dynamics in interphase and mitosis. However, little is known about the underlying mechanism or regulation of this Apc function. We identified importin-beta as a binding partner of Apc that regulates its effect on MTs. Apc binds importin-beta in vitro and in Xenopus egg extracts, and RanGTP inhibits this interaction. The armadillo-like repeat domain of importin-beta binds to the middle of Apc, where it can compete with beta-catenin. In addition, two independent sites in the C terminus of Apc bind the N-terminal region of importin-beta. Binding to importin-beta reduces the ability of Apc to assemble and bundle MTs in vitro and to promote assembly of microtubule asters in Xenopus egg extracts, but does not affect the binding of Apc to MTs or to EB1. Depletion of Apc decreases the formation of cold-stable spindles in Xenopus egg extracts. Importantly, the ability of purified Apc to rescue this phenotype was reduced when it was constitutively bound to importin-beta. Thus, importin-beta binds to Apc and negatively regulates the MT-assembly and spindle-promoting activity of Apc in a Ran-regulatable manner.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Sitios de Unión/genética , Sitios de Unión/fisiología , Inmunoprecipitación , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Xenopus , Proteínas de Xenopus/genética , beta Catenina/metabolismo
15.
PLoS Genet ; 6(1): e1000816, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20084116

RESUMEN

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Asunto(s)
Ratones/genética , Ratones/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones/embriología , Ratones/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Wnt , Proteína Wnt3 , beta Catenina/genética
17.
J Cell Sci ; 121(11): 1916-25, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18477604

RESUMEN

Truncation mutations in the adenomatous polyposis coli (APC) gene are responsible for familial and sporadic colorectal cancer. APC is a multifunctional protein involved in cell migration, proliferation and differentiation. The APC protein forms specific clusters in the cell periphery that correlate with sites of active cell migration. Little is known about the molecular mechanisms that govern these clusters. Here, we identify a novel interaction of an N-terminal region of APC with the extreme C-terminal 300 amino acids of APC and also with itself. The latter interaction is phospho-sensitive and is enhanced by 14-3-3 (YWHA) protein. These interactions modulate the clustering of APC at the ends of membrane protrusions. Overexpressing this domain or inhibiting 14-3-3 proteins disperses APC clusters and leads to decreased cell migration. Moreover, deleting this domain from full-length APC results in less-dynamic clusters compared with wild-type APC. Our data indicate that this newly identified regions in the N-terminal third of APC contributes to the regulation of APC clusters, thus providing a molecular clue for how locally regulated phosphorylation events could mediate the dynamics of APC clusters and contribute to cell migration.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas 14-3-3/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/química , Animales , Carcinoma/genética , Carcinoma/metabolismo , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Perros , Humanos , Mutación/genética , Fosforilación , Unión Proteica/genética , Estructura Terciaria de Proteína/fisiología , Ratas
18.
Curr Opin Cell Biol ; 20(2): 186-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18359618

RESUMEN

The adenomatous polyposis coli (Apc) protein participates in many of the fundamental cellular processes that govern epithelial tissues: Apc is directly involved in regulating the availability of beta-catenin for transcriptional de-repression of Tcf/LEF transcription factors, it contributes to the stability of microtubules in interphase and mitosis, and has an impact on the dynamics of F-actin. Thus Apc contributes directly and/or indirectly to proliferation, differentiation, migration, and apoptosis. This particular multifunctionality can explain why disruption of Apc is especially detrimental for the epithelium of the gut, where Apc mutations are common in most cancers. We summarise recent data that shed light on the molecular mechanisms involved in the different functions of Apc.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Fenómenos Fisiológicos Celulares , Epitelio/metabolismo , Animales , Apoptosis , Núcleo Celular/metabolismo , Humanos , Proteínas Wnt/metabolismo
19.
J Cell Biol ; 176(2): 183-95, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17227893

RESUMEN

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene initiate a majority of colorectal cancers. Acquisition of chromosomal instability is an early event in these tumors. We provide evidence that the loss of APC leads to a partial loss of interkinetochore tension at metaphase and alters mitotic progression. Furthermore, we show that inhibition of APC in U2OS cells compromises the mitotic spindle checkpoint. This is accompanied by a decrease in the association of the checkpoint proteins Bub1 and BubR1 with kinetochores. Additionally, APC depletion reduced apoptosis. As expected from this combination of defects, tetraploidy and polyploidy are consequences of APC inhibition in vitro and in vivo. The removal of APC produced the same defects in HCT116 cells that have constitutively active beta-catenin. These data show that the loss of APC immediately induces chromosomal instability as a result of a combination of mitotic and apoptotic defects. We suggest that these defects amplify each other to increase the incidence of tetra- and polyploidy in early stages of tumorigenesis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Apoptosis/fisiología , Mitosis/fisiología , Poliploidía , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HCT116 , Histonas/análisis , Humanos , Mucosa Intestinal/metabolismo , Intestinos/química , Intestinos/patología , Ratones , Ratones Transgénicos , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Nocodazol/farmacología , Paclitaxel/farmacología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/genética , Huso Acromático/metabolismo , Estaurosporina/farmacología , beta Catenina/análisis , beta Catenina/metabolismo
20.
Mol Biol Cell ; 18(3): 910-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17192415

RESUMEN

Most sporadic colorectal tumors carry truncation mutations in the adenomatous polyposis coli (APC) gene. The APC protein is involved in many processes that govern gut tissue. In addition to its involvement in the regulation of beta-catenin, APC is a cytoskeletal regulator with direct and indirect effects on microtubules. Cancer-related truncation mutations lack direct and indirect binding sites for microtubules in APC, suggesting that loss of this function contributes to defects in APC-mutant cells. In this study, we show that loss of APC results in disappearance of cellular protrusions and decreased cell migration. These changes are accompanied by a decrease in overall microtubule stability and also by a decrease in posttranslationally modified microtubules in the cell periphery particularly the migrating edge. Consistent with the ability of APC to affect cell shape, the overexpression of APC in cells can induce cellular protrusions. These data demonstrate that cell migration and microtubule stability are linked to APC status, thereby revealing a weakness in APC-deficient cells with potential therapeutic implications.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Movimiento Celular , Microtúbulos/metabolismo , Acetilación , Proteína de la Poliposis Adenomatosa del Colon/química , Línea Celular Tumoral , Forma de la Célula , Extensiones de la Superficie Celular/metabolismo , Fibroblastos/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...