Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38397794

RESUMEN

Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36978954

RESUMEN

Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36829773

RESUMEN

Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.

4.
Am J Physiol Cell Physiol ; 323(6): C1791-C1806, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342159

RESUMEN

Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Humanos , Hierro/metabolismo , Células CACO-2 , Calcio , Calcio de la Dieta , Proteínas de Transporte de Catión/metabolismo , Cinética , Absorción Intestinal , Modelos Teóricos
5.
Antioxidants (Basel) ; 11(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139881

RESUMEN

Selective regional iron accumulation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The underlying mechanisms of neuronal iron dyshomeostasis have been studied, mainly in a gene-by-gene approach. However, recent high-content phenotypic screens using CRISPR/Cas9-based gene perturbations allow for the identification of new pathways that contribute to iron accumulation in neuronal cells. Herein, we perform a bioinformatic analysis of a CRISPR-based screening of lysosomal iron accumulation and the functional genomics of human neurons derived from induced pluripotent stem cells (iPSCs). Consistent with previous studies, we identified mitochondrial electron transport chain dysfunction as one of the main mechanisms triggering iron accumulation, although we substantially expanded the gene set causing this phenomenon, encompassing mitochondrial complexes I to IV, several associated assembly factors, and coenzyme Q biosynthetic enzymes. Similarly, the loss of numerous genes participating through the complete macroautophagic process elicit iron accumulation. As a novelty, we found that the impaired synthesis of glycophosphatidylinositol (GPI) and GPI-anchored protein trafficking also trigger iron accumulation in a cell-autonomous manner. Finally, the loss of critical components of the iron transporters trafficking machinery, including MON2 and PD-associated gene VPS35, also contribute to increased neuronal levels. Our analysis suggests that neuronal iron accumulation can arise from the dysfunction of an expanded, previously uncharacterized array of molecular pathways.

7.
Free Radic Biol Med ; 175: 28-41, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461261

RESUMEN

Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.


Asunto(s)
Ferroptosis , Calcio , Muerte Celular , Hierro , Especies Reactivas de Oxígeno
9.
PLoS One ; 14(6): e0218123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31181103

RESUMEN

Iron is essential for the normal development of cellular processes. This metal has a high redox potential that can damage cells and its overload or deficiency is related to several diseases, therefore it is crucial for its absorption to be highly regulated. A fast-response regulatory mechanism has been reported known as mucosal block, which allows to regulate iron absorption after an initial iron challenge. In this mechanism, the internalization of the DMT1 transporters in enterocytes would be a key factor. Two phenomenological models are proposed for the iron absorption process: DMT1's binary switching mechanism model and DMT1's swinging-mechanism model, which represent the absorption mechanism for iron uptake in intestinal cells. The first model considers mutually excluding processes for endocytosis and exocytosis of DMT1. The second model considers a Ball's oscillator to represent the oscillatory behavior of DMT1's internalization. Both models are capable of capturing the kinetics of iron absorption and represent empirical observations, but the DMT1's swinging-mechanism model exhibits a better correlation with experimental data and is able to capture the regulatory phenomenon of mucosal block. The DMT1 swinging-mechanism model is the first phenomenological model reported to effectively represent the complexity of the iron absorption process, as it can predict the behavior of iron absorption fluxes after challenging cells with an initial dose of iron, and the reduction in iron uptake observed as a result of mucosal block after a second iron dose.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Absorción Intestinal , Hierro/metabolismo , Modelos Teóricos , Animales , Humanos , Mucosa Intestinal/metabolismo , Cinética
10.
Pharmaceuticals (Basel) ; 11(4)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347635

RESUMEN

Iron chelation has been introduced as a new therapeutic concept for the treatment of neurodegenerative diseases with features of iron overload. At difference with iron chelators used in systemic diseases, effective chelators for the treatment of neurodegenerative diseases must cross the blood⁻brain barrier. Given the promissory but still inconclusive results obtained in clinical trials of iron chelation therapy, it is reasonable to postulate that new compounds with properties that extend beyond chelation should significantly improve these results. Desirable properties of a new generation of chelators include mitochondrial destination, the center of iron-reactive oxygen species interaction, and the ability to quench free radicals produced by the Fenton reaction. In addition, these chelators should have moderate iron binding affinity, sufficient to chelate excessive increments of the labile iron pool, estimated in the micromolar range, but not high enough to disrupt physiological iron homeostasis. Moreover, candidate chelators should have selectivity for the targeted neuronal type, to lessen unwanted secondary effects during long-term treatment. Here, on the basis of a number of clinical trials, we discuss critically the current situation of iron chelation therapy for the treatment of neurodegenerative diseases with an iron accumulation component. The list includes Parkinson's disease, Friedreich's ataxia, pantothenate kinase-associated neurodegeneration, Huntington disease and Alzheimer's disease. We also review the upsurge of new multifunctional iron chelators that in the future may replace the conventional types as therapeutic agents for the treatment of neurodegenerative diseases.

11.
Free Radic Biol Med ; 117: 132-144, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29309895

RESUMEN

The transcription factor STAT3 has a crucial role in the development and maintenance of the nervous system. In this work, we treated astrocytes with oligomers of the amyloid beta peptide (AßOs), which display potent synaptotoxic activity, and studied the effects of mediators released by AßOs-treated astrocytes on the nuclear location of neuronal serine-727-phosphorylated STAT3 (pSerSTAT3). Treatment of mixed neuron-astrocyte cultures with 0.5µMAßOs induced in neurons a significant decrease of nuclear pSerSTAT3, but not of phosphotyrosine-705 STAT3, the other form of STAT3 phosphorylation. This decrease did not occur in astrocyte-poor neuronal cultures revealing a pivotal role for astrocytes in this response. To test if mediators released by astrocytes in response to AßOs induce pSerSTAT3 nuclear depletion, we used conditioned medium derived from AßOs-treated astrocyte cultures. Treatment of astrocyte-poor neuronal cultures with this medium caused pSerSTAT3 nuclear depletion but did not modify overall STAT3 levels. Extracellular catalase prevented the pSerSTAT3 nuclear depletion caused by astrocyte-conditioned medium, indicating that reactive oxygen species (ROS) mediate this response. This conditioned medium also increased neuronal oxidative tone, leading to a ryanodine-sensitive intracellular calcium signal that proved to be essential for pSerSTAT3 nuclear depletion. In addition, this depletion decreased BCL2 and Survivin transcription and significantly increased BAX/BCL2 ratio. This is the first description that ROS generated by AßOs-treated astrocytes and neuronal calcium signals jointly regulate pSerSTAT3 nuclear distribution in neurons. We propose that astrocytes release ROS in response to AßOs, which by increasing neuronal oxidative tone, generate calcium signals that cause pSerSTAT3 nuclear depletion and loss of STAT3 protective transcriptional activity.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Neuronas/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Astrocitos/efectos de los fármacos , Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Supervivencia Celular , Regulación de la Expresión Génica/fisiología , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo
12.
RSC Adv ; 8(55): 31261-31266, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35548216

RESUMEN

A new probe (E)-7-(diethylamino)-3-(3-(thiophen-2-yl)acryloyl)-2H-chromen-2-one (ChC16) was synthesized and studied as a turn-on fluorescent probe, based on a Michael addition mechanism for sensing SO2 derivatives, which is favored in the presence of cationic micellar media such as cetylpyridinium bromide (CPB). The probe showed high selectivity and sensitivity toward bisulfite over other anions and biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), with a detection limit of 240 nM. Moreover, the probe showed great potential for its practical application in the detection of bisulfite in real samples, such as dry white wine, and in bioimaging.

13.
PLoS One ; 12(12): e0189043, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29228015

RESUMEN

Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer's diseases, Friedreich ataxia and Huntington's disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.


Asunto(s)
Antioxidantes/metabolismo , Hierro/metabolismo , Neuronas/fisiología , Señalización del Calcio , Línea Celular Tumoral , Humanos , Neuronas/metabolismo , Estrés Oxidativo
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2202-2209, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28502703

RESUMEN

Mitochondrial dysfunction and oxidative damage, often accompanied by elevated intracellular iron levels, are pathophysiological features in a number of neurodegenerative processes. The question arises as to whether iron dyshomeostasis is a consequence of mitochondrial dysfunction. Here we have evaluated the role of Iron Regulatory Protein 1 (IRP1) in the death of SH-SY5Y dopaminergic neuroblastoma cells subjected to mitochondria complex I inhibition. We found that complex I inhibition was associated with increased levels of transferrin receptor 1 (TfR1) and iron uptake transporter divalent metal transporter 1 (DMT1), and decreased levels of iron efflux transporter Ferroportin 1 (FPN1), together with increased 55Fe uptake activity and an increased cytoplasmic labile iron pool. Complex I inhibition also resulted in increased oxidative modifications and increased cysteine oxidation that were inhibited by the iron chelators desferoxamine, M30 and Q1. Silencing of IRP1 abolished the rotenone-induced increase in 55Fe uptake activity and it protected cells from death induced by complex I inhibition. IRP1 knockdown cells presented higher ferritin levels, a lower iron labile pool, increased resistance to cysteine oxidation and decreased oxidative modifications. These results support the concept that IRP1 is an oxidative stress biosensor that mediates iron accumulation and cell death when deregulated by mitochondrial dysfunction. IRP1 activation, secondary to mitochondrial dysfunction, may underlie the events leading to iron dyshomeostasis and neuronal death observed in neurodegenerative disorders with an iron accumulation component.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Proteína 1 Reguladora de Hierro/metabolismo , Mitocondrias/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Muerte Celular , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteína 1 Reguladora de Hierro/genética , Mitocondrias/genética , Mitocondrias/patología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
15.
J Neurochem ; 142(1): 140-152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266714

RESUMEN

Alzheimer's disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and neuronal death. Aggregated amyloid-ß (Aß) induces inflammation and oxidative stress, which have pivotal roles in the pathogenesis of AD. Hepcidin is a key regulator of systemic iron homeostasis. Recently, an anti-inflammatory response to hepcidin was reported in macrophages. Under the hypothesis that hepcidin mediates anti-inflammatory response in the brain, in this study, we evaluated the putative anti-inflammatory role of hepcidin on Aß-activated astrocytes and microglia. Primary culture of astrocytes and microglia were treated with Aß, with or without hepcidin, and cytokine levels were then evaluated. In addition, the toxicity of Aß-treated astrocyte- or microglia-conditioned media was tested on neurons, evaluating cellular death and oxidative stress generation. Finally, mice were injected in the right lateral ventricle with Aß, with or without hepcidin, and hippocampus glial activation and oxidative stress were evaluated. Pre-treatment with hepcidin reduced the expression and secretion of TNF-α and IL-6 in astrocytes and microglia treated with Aß. Hepcidin also reduced neurotoxicity and oxidative damage triggered by conditioned media obtained from astrocytes and microglia treated with Aß. Stereotaxic intracerebral injection of hepcidin reduced glial activation and oxidative damage triggered by Aß injection in mice. Overall, these results are consistent with the hypothesis that in astrocytes and microglia hepcidin down-regulates the inflammatory and pro-oxidant processes induced by Aß, thus protecting neighboring neurons. This is a newly described property of hepcidin in the central nervous system, which may be relevant for the development of strategies to prevent the neurodegenerative process associated with AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Antioxidantes/farmacología , Astrocitos/efectos de los fármacos , Hepcidinas/farmacología , Inflamación/inducido químicamente , Inflamación/prevención & control , Microglía/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Animales , Medios de Cultivo Condicionados , Hipocampo/patología , Inflamación/metabolismo , Inyecciones Intraventriculares , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Factor de Necrosis Tumoral alfa/metabolismo
16.
PLoS One ; 12(1): e0169601, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072870

RESUMEN

Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems.


Asunto(s)
Absorción Gastrointestinal , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Modelos Teóricos , Algoritmos , Animales , Transporte Biológico , Línea Celular Tumoral , Humanos , Cinética , Modelos Biológicos , Modelos Genéticos , Reproducibilidad de los Resultados
17.
ACS Chem Neurosci ; 8(1): 178-185, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27806193

RESUMEN

Disturbed iron homeostasis, often coupled to mitochondrial dysfunction, plays an important role in the progression of common neurodegenerative diseases such as Parkinson's disease (PD). Recent studies have underlined the relevance of iron chelation therapy for the treatment of these diseases. Here we describe the synthesis, chemical, and biological characterization of the multifunctional chelator 7,8-dihydroxy-4-((methylamino)methyl)-2H-chromen-2-one (DHC12). Metal selectivity of DHC12 was Cu2+ ∼ Fe2+ > Zn2+ > Fe3+. No binding capacity was detected for Hg2+, Co2+, Ca2+, Mn2+, Mg2+, Ni2+, Pb2+, or Cd2+. DHC12 accessed cells colocalizing with Mitotracker Orange, an indication of mitochondrial targeting. In addition, DHC12 chelated mitochondrial and cytoplasmic labile iron. Upon mitochondrial complex I inhibition, DHC12 protected plasma membrane and mitochondria against lipid peroxidation, as detected by the reduced formation of 4-hydroxynonenal adducts and oxidation of C11-BODIPY581/591. DHC12 also blocked the decrease in mitochondrial membrane potential, detected by tetramethylrhodamine distribution. DHC12 inhibited MAO-A and MAO-B activity. Oral administration of DHC12 to mice (0.25 mg/kg body weight) protected substantia nigra pars compacta (SNpc) neurons against MPTP-induced death. Taken together, our results support the concept that DHC12 is a mitochondrial-targeted neuroprotective iron-copper chelator and MAO-B inhibitor with potent antioxidant and mitochondria protective activities. Oral administration of low doses of DHC12 is a promising therapeutic strategy for the treatment of diseases with a mitochondrial iron accumulation component, such as PD.


Asunto(s)
Cumarinas/síntesis química , Cumarinas/uso terapéutico , Intoxicación por MPTP/patología , Intoxicación por MPTP/prevención & control , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Cobre/metabolismo , Cumarinas/química , Citosol/efectos de los fármacos , Citosol/metabolismo , Modelos Animales de Enfermedad , Humanos , Hierro/metabolismo , Quelantes del Hierro/síntesis química , Quelantes del Hierro/química , Quelantes del Hierro/uso terapéutico , Intoxicación por MPTP/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monoaminooxidasa/metabolismo , Neuroblastoma/patología , Fármacos Neuroprotectores/química , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
18.
Adv Exp Med Biol ; 949: 167-181, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27714689

RESUMEN

The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149-1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).


Asunto(s)
Hierro/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Axones/metabolismo , Diferenciación Celular , Hipoxia de la Célula , Regulación de la Expresión Génica , Humanos , Oligodendroglía/citología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Parkinsons Dis ; 2016: 7049108, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27293957

RESUMEN

Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...